next up previous
Next: Occupation Number and Energy Up: Definitions of Number and Previous: Rescaled Fourier Transforms

Conformal Coordinates

The equation of motion for a scalar field in an expanding universe is

\begin{displaymath}
\ddot{f} + 3 {\dot{a} \over a} \dot{f} - {1 \over a^2} \nabla^2 f
+ {\partial V \over \partial f} = 0.
\end{displaymath} (5.10)

To define an adiabatic invariant occupation number for this field we need to switch to conformal variables in which this equation becomes a more standard oscillator equation. These variables are
\begin{displaymath}
f_c \equiv a f;\;dt_c \equiv {1 \over a} dt.
\end{displaymath} (5.11)

Using conformal time and noting that
\begin{displaymath}
\dot{f} = {1 \over a} f';\;\ddot{f} = {1 \over a^2} f'' - {a'
\over a^3} f'
\end{displaymath} (5.12)

the equation of motion becomes
\begin{displaymath}
f'' + 2 {a' \over a} f' - \nabla^2 f + a^2 {\partial V \over
\partial f} = 0.
\end{displaymath} (5.13)

Then switching to conformal field values note that
\begin{displaymath}
f' = {1 \over a} f_c' - {a' \over a^2} f_c;\;f'' = {1 \over ...
...\over a^2} f_c' + 2 {a'^2 \over a^3} f_c - {a''
\over a^2} f_c
\end{displaymath} (5.14)

and thus
\begin{displaymath}
f_c'' - {a'' \over a} f_c - \nabla^2 f_c + a^4 {\partial V \over
\partial f_c} = 0.
\end{displaymath} (5.15)

This equation can be approximated in Fourier space by
\begin{displaymath}
\tilde{F}_{k,c}'' + \omega_k \tilde{F}_{k,c} = 0
\end{displaymath} (5.16)

where $\tilde{F}_{k,c} = a \tilde{F}_k$ and
\begin{displaymath}
\omega_k^2 \equiv k^2 + a^4 \left<{\partial^2 V \over \parti...
...left<{\partial^2 V
\over \partial f^2}\right> - {a'' \over a}.
\end{displaymath} (5.17)


next up previous
Next: Occupation Number and Energy Up: Definitions of Number and Previous: Rescaled Fourier Transforms

Go to The LATTICEEASY Home Page
Go to Gary Felder's Home Page
Send email to Gary Felder at gfelder@email.smith.edu
Send email to Igor Tkachev at Igor.Tkachev@cern.ch

This documentation was generated on 2008-01-21