
Chapter: Linear Algebra

Motivating Exercise for Linear Algebra:
All I Really Need to Know About Matrices I Learned from the Three-
Spring Problem

The figure shows two balls connected to each other and to the walls by three springs. We will assume throughout
this exercise that the balls begin at rest, so our initial conditions are only their starting positions x1(0) and x2(0).
As an example the drawing shows Ball 1 at its equilibrium position and Ball 2 displaced to the right.

Figure 1: The three-spring problem with Ball 1 at equilibrium and Ball 2 displaced to the right.

With a bit of introductory physics (Problem 10) you can derive the appropriate differential equations. For m1 = 2
kg, m2 = 9 kg, k1 = 2 N/m, k2 = 6 N/m, and k3 = 21 N/m, the equations become:

d2x1
dt2

= −4x1 + 3x2 (1)

d2x2
dt2

=
2

3
x1 − 3x2 (2)

We begin by noticing that Equation 1 writes ẍ1 as a linear combination of x1 and x2, and Equation 2 does the same
for ẍ2. (If you’re not familiar with that notation, ẋ means dx/dt and ẍ means d2x/dt2 and so on.) In general, a
linear combination of x and y is any function ax+by where a and b are constants. Linear algebra is all about working
with that particular kind of function, using a mathematical tool called a “matrix.”

When you learn how to rewrite linear equations with matrices, you will find that you
can rewrite Equations 1 and 2 as a single matrix equation. This simple change in notation
will allow you to bring all the tools of matrix mechanics to bear on this problem.

Throughout this exercise you will see other arrows like the one above. Each one discusses a topic where you will learn
how to use matrices to solve part of this problem. In some cases your first reaction may be “I don’t need matrices to
solve this.” But this example has only two equations with two unknowns: engineers frequently work with hundreds of
equations and unknowns, and matrices give us the approach that scales up to that size.

Two simple solutions for the just-right initial conditions

For any value of A the following functions provide a valid solution to Equations 1 and 2.

x1(t) = A cos
(√

2 t
)

x2(t) =
2

3
A cos

(√
2 t

) (3)
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You can easily verify that Equation 3 works by plugging it into Equations 1–2, but this isn’t just any solution: it’s a
particularly important type of solution called a “normal mode.” The whole strategy of solving problems like this is
based on knowing how to find the normal modes, and how to use them once you find them. We will provide sketchy
outlines of both those processes in this exercise, which will be fleshed out as you learn about linear algebra. But first
it is essential for you to understand the kind of behavior that Equations 3 describe.

Let’s start by considering the initial conditions. Equation 3 implies four of them: x1(0) = A, x2(0) = (2/3)A, and
both ẋ1(0) and ẋ2(0) are zero.1 This tells us how to get the system into this mode. You pull m1 out to any distance
you like, right or left. Then you pull m2 out to exactly 2/3 of that distance in the same direction. Then you release
both masses from rest.

And what will happen from there? The two masses will oscillate with different amplitudes but the same frequency.
They will go through x = 0 (their equilibrium positions) at the same time, reach their maximum amplitudes on the
other side at the same time, and come back to their starting positions at the same time. Because they oscillate with
the same frequency and phase, they will maintain the relationship x2 = (2/3)x1 at all times.

So this normal mode is defined by two quantities: the ratio of x2 to x1, and the frequency with which the system
oscillates. If the two positions are in that ratio, they will stay in that ratio and oscillate with that frequency forever.
All this behavior is based on the fact that the two masses are oscillating with the same frequency as each other.

Definition: Normal Modes

A normal mode of this system is a solution in which the ratio x2/x1 stays constant over time. This implies that the
two balls are oscillating with the same frequency, so the motion of the entire system is periodic.

As we will see below, most possible behaviors of this system do not qualify as normal modes. For most initial
conditions the ratio x2/x1 will not remain constant and the balls will not oscillate with the same frequency (or with
any constant frequency). But there is one other normal mode, described by the following solution.

x1(t) = B cos
(√

5 t
)

x2(t) = −1

3
B cos

(√
5 t

) (4)

Once again this solution represents a very specific set of initial conditions: you pull Ball 1 a certain distance from
equilibrium, pull Ball 2 a third of that distance in the opposite direction, and release them from rest. The balls move
inward at the same time, and then outward. But once again the frequencies are the same, the motion is simple and
periodic, and the ratio x2 = −(1/3)x1 persists.

You might now expect that for every initial x2/x1 there is a certain normal mode with a certain frequency associated
with it, but in fact Equations 3 and 4 represent the only two normal modes of this particular system. There are no
more.

So we’ve learned a lot about our system, but you’re probably not ready to sound the victory bells. First of all, what
if x2 doesn’t happen to start at (2/3)x1 or −(1/3)x1? And second of all, how did we find those solutions in the first
place? Below we will outline the answers to both of those questions, but we will have to leave a number of holes that
will be filled in with matrices.

More complicated solutions for other initial conditions

Let’s see how our system responds to a variety of initial conditions.

1If the initial velocities were nonzero we would need to add sine solutions as well as cosines: see Problem 12.

2



Chapter: Linear Algebra

First Example: x1(0) = 12 and x2(0) = −4

This fits our second normal mode, where B = 12.

x1(t) = 12 cos
(√

5 t
)

x2(t) = −4 cos
(√

5 t
)

The balls will oscillate with a frequency of
√

5 and with amplitudes 12 and 4. Their displacements will always be in
opposite directions (out of phase by π).

Second Example: x1(0) = 4 and x2(0) = 5/3

There is no way to get either of our two solutions to fit this initial condition, and there is no normal mode with
x2/x1 = 5/12. It seems that our solutions so far are only useful in a few very carefully selected cases.

But Equations 1 and 2 are linear, homogeneous differential equations, so any combination of solutions is a solution.
If we choose A = 3 in the first normal mode and B = 1 in the second normal mode, and then add the solutions, we
get a new solution.

x1(t) = 3 cos
(√

2 t
)

+ cos
(√

5 t
)

x2(t) = 2 cos
(√

2 t
)
− 1

3
cos

(√
5 t

) (5)

In Problem 13 you will plug these in to verify that they solve the differential equations and our initial condition. But
it’s more important to see that they work without plugging them in, by following this logic.

• The solution x1 = 3 cos(
√

2 t), x2 = 2 cos(
√

2 t) solves the differential equations; we know this because it fits
our first normal mode. It meets the initial conditions x1(0) = 3, x2(0) = 2.

• The solution x1 = cos(
√

5 t), x2 = −(1/3) cos(
√

5 t) solves the differential equations because it is our second
normal mode. It meets the initial conditions x1(0) = 1, x2(0) = −1/3.

• When we add these two solutions the result must still satisfy the differential equations, and must meet initial
conditions x1(0) = 4, x2(0) = 5/3.

The “Second Example” above is the most important part of this exercise, capturing an entire solution in the two
numbers A = 3 and B = 1. In other words the system starts out in a state that can be represented as 3 of the first
normal mode plus 1 of the second normal mode. We know how each of these normal modes evolves in time, so we
know how the entire system will evolve. Hence, the question “how do I find the behavior of this system?” is replaced
with “how do I express the initial state as a linear combination of the two normal modes?”

When you learn to multiply matrices, you will have an elegant formalism for converting from
normal modes to positions. This process can also be framed as a “change of basis,” and you will
learn the conditions under which such a conversion can reliably be done.
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We need to make one more point about the above solution: the resulting motion is not simple. If you were to watch
the two balls the motion would look almost random, and it would not be periodic no matter how long you looked.
But hidden under the randomness would be two simple, periodic systems being added together.

Figure 2: The two plots on the left show normal modes, which are periodic. The plot on the right shows the motion of x1(t)
in the second example above. It’s a sum of periodic motions, but it is not periodic.

The moral of Figure 2 is that if you look at the system and ask “Where is Ball 1 and where is Ball 2 over time?”
the answer looks chaotic. You see the underlying order if you ask instead “How much of the first normal mode and
how much of the second normal mode do I have?”

Third example: x1(0) = 5 and x2(0) = 7

We chose those numbers precisely because there doesn’t seem to be any obvious way to get there from our two normal
modes. But once again, you can do so if you choose the right values of A and B and then add solutions. In this case,
the right values are A = 26/3 and B = −11/3.

x1 =
26

3
cos

(√
2 t

)
− 11

3
cos

(√
5 t

)
x2 =

(
2

3

)
26

3
cos

(√
2 t

)
−

(
−1

3

)
11

3
cos

(√
5 t

)

Finding the numbers 26/3 and −11/3 in the last example required us to find just the right
linear combination of solutions to match the desired initial conditions. In other words,
it requires us to translate from “positions of the balls” to “amplitudes of the normal modes.”
When you learn about inverse matrices, you will know how to find the matrix to accomplish this.

Now, how did we come up with those normal modes?

Remember that this is an outline, not a full derivation. Many of the key steps will have to be filled when you have
learned more about matrices.

As we usually do with differential equations, we begin by thinking about what kind of solution we can guess. You
can imagine trying any pair of functions x1(t) and x2(t), but we’re going to restrict our guess in two important ways.
First, given that we’re describing balls on springs, we’re going to guess oscillatory solutions. Second, less obviously,
we’re going to guess solutions for which both balls will oscillate with the same frequency: that is, normal modes. As
we have seen, they are simple to understand physically and to work with mathematically, and they can combine to
give us the more complicated behavior that may also arise.

Let’s start by guessing a very simple normal mode: x1 = C1 cos t and x2 = C2 cos t. Plugging these into Equations 1
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and 2 and simplifying a little gets us here:
3C1 − 3C2 = 0

2

3
C1 − 2C2 = 0

(6)

Matrix “row reduction” provides the right tool for solving simultaneous linear equations. (Remember
again that we need to be able to do this with 100 equations, not just with two as in this example.)

You can probably solve Equations 6 in a minute or two, but we’ll save you the trouble and tell you that C1 = C2 = 0.
(Looks obvious now, doesn’t it?) That leads us to x1(t) = x2(t) = 0, sometimes called the “trivial solution”: it does
satisfy Equations 1 and 2, but it isn’t very helpful. We want to know how the balls move, not how they stand still.

So “cos t” didn’t work out too well. What if we change the frequency? In Problem 16 you will guess oscillatory
functions with many different frequencies, but they will lead back to the same place.

So here comes a particularly lucky guess: what if we just happen to try x1 = C1 cos(
√

2 t) and x2 = C2 cos(
√

2 t)?
Then we end up here.

2C1 − 3C2 = 0 (7)

−2

3
C1 + C2 = 0 (8)

Once again C1 = C2 = 0 fits, but this time it isn’t the only solution. Equation 7 can be rewritten as C2 = (2/3)C1.
Equation 8 can be written the same way. That means any numbers C1 and C2 with that particular ratio will solve
both equations. So this time we have a useful solution—an infinite number of them, in fact—which are the first
normal mode we saw above.

x1(t) = A cos
(√

2 t
)

x2(t) = (2/3)A cos
(√

2 t
)

Why was it that Equations 6 got us nowhere, but Equations 7 and 8 worked so well? Because the first set of equations
had only one solution; the second set of equations was “linearly dependent” (or “redundant”), and had infinitely
many solutions.

The “determinant” of a matrix determines if a set of simultaneous equations has only one solution,
as opposed to being “linearly dependent” (infinitely many solutions) or “inconsistent” (no solutions).

Finally, what led us to expect that we could find a normal mode solution in the first place? It turns out that in
almost every case linear differntial equations for coupled oscillators have normal mode solutions, and the general
solutions can be built up from linear combinations of these solutions.

If you’ve seen linear algebra before, you may remember finding “eigenvectors”
and “eigenvalues.” The eigenvectors of a matrix tell you the normal modes of
a system, and the eigenvalues tell you the frequencies of those normal modes.
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Stepping Back

One of our goals in this exercise is to have you understand normal modes as a way of thinking about the behavior
of a coupled oscillator. Equations 3 represent a simple, periodic, and self-perpetuating solution to the differential
equation: that is, if the system is ever in that state, it will stay in that state forever. Equations 4 represent another
self-perpetuating solution. Any combination of these solutions is also a solution (because the differential equations
are linear and homogeneous). Most remarkably, any state of the system can be represented as a linear combination
of these solutions—so once you know the combination, you know just how it will evolve.

But we also want to set up the two key places where matrices play into the process.

• We can use a matrix to convert from A and B to x1(t) and x2(t). (“If the first coefficient is 7 and the second
is −4, what are the balls actually doing?”) As you will see this is a job ideally suited for matrices, because
it is a linear transformation from one multi-variable representation to a different multi-variable representation
of the same state. An inverse matrix performs the same conversion in the other direction, finding the right
combination of normal modes to match any given initial conditions.

• We can also use a matrix to find the normal modes in the first place. The “eigenvalues” of a matrix give the
frequency of each normal modes, and the “eigenvectors” give the ratio of x1 to x2.

These two uses of matrices are not unrelated, but that won’t be clear until you have learned about eigenvalues. Focus
now on how two numbers such as “A = 26/3 and B = −11/3” can describe the entire behavior of the system—the
initial conditions and how they will evolve through time—and you will begin your study of linear algebra on a solid
foundation.

0.1 Problems: The Three-Spring Problem

1. (a) If the three-spring system in the exercise begins at rest with x1(0) = 3 and x2(0) = 2 then it is in the first
normal mode. Describe in words how this system will evolve over time.

(b) If the three-spring system begins at rest with x1(0) = 3 and x2(0) = −1 then it is in the second normal
mode. How will the resulting behavior be like Part (a), and how will it be different?

(c) Now—suppose you solved the differential equations with the initial conditions in Part (a), and then you
solved them again with the initial conditions from Part (b), and then you added those two solutions.
Would the resulting functions necessarily solve the differential equations? Why or why not? What initial
conditions would they represent?

(d) Describe in words how the system in Part (c) will evolve over time.

2. The general solution to Equations 1–2 with ẋ1(0) = ẋ2(0) = 0 is any combination of Equations 3 and Equa-
tions 4.

(a) Write the solution represented by the constants A = −10, B = 0. What initial conditions x1(0) and x2(0)
does this solution represent?

(b) Write the solution represented by the constants A = 10, B = −9. What initial conditions x1(0) and x2(0)
does this solution represent?

(c) What constants A and B lead to the initial conditions x1(0) = 13.5 and x2(0) = −3? What is the solution
to the differential equations with these initial conditions?

3. Which of the following represents a normal mode? We are not asking if they are solutions to the differential
equations in this exercise, or to any other particular equations. We are simply saying: if some system moved
as described by these functions, would that be considered a normal mode of the system? For each one explain
in one brief sentence why it is or isn’t a normal mode.

(a) x1 = A sin t, x2 = 2A sin t

(b) x1 = A sin t, x2 = 2A sin(2t)
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(c) x1 = Ae2it, x2 = 3Ae2it

(d) x1 = Ae2it, x2 = Ae4it

4. Consider a system defined by the positions of two objects, a(t) and b(t). We’re not going to tell you anything
about what those two objects are, or the differential equations that represent them. We will tell you that the
positions oscillate sinusoidally, and they both start at rest at t = 0.

(a) Suppose we tell you that “If b = 6a then both positions will oscillate with a frequency of 10 radians/sec.”
If you start with a = 2 and b = 12 and watch the system go for a few seconds, will b still equal 6a?

(b) Suppose we tell you that “If b = 7a then a will oscillate at 2 cycles per second and b at 3 cycles per
second.” If you start with a = 2 and b = 14 and watch the system go for a few seconds, will b still equal
7a?

5. Consider a system of balls on springs like the ones we’ve been discussing in this exercise and assume the system
is in one of its normal modes.

(a) Is it possible for one of the balls to be to the right of its equilibrium point while another one is to the left
of its equililbrium point? Why or why not?

(b) Is it possible for one of the balls to pass through its equilibrium point at a time when another one is not
at its equilibrium point? Why or why not?

(c) How would your answers change if the system were not in a normal mode?

6. In this problem you will consider the three-spring problem with both masses equal and all three spring constants
equal. (This is not the situation described by Equations 1 and 2.) You should be able to answer all of the
following questions by thinking about the physical situation without doing any calculations.

(a) First consider initial conditions in which you pulled both balls to the right by the same amount and let
go.

i. Spring 1 (the left-most spring) would pull Ball 1 to the left. Spring 3 would push Ball 2 to the left.
Which of these forces would be larger, or would they be equal? Why?

ii. Would the force of Spring 2 on Ball 1 be to the left, to the right, or zero? Why?

iii. Describe the long term behavior of the system given these initial conditions. Explain why this would
be a normal mode solution.

(b) Describe the other normal mode of the system. Specify both the initial conditions and the long term
behavior associated with this second normal mode.

7. [This problem depends on Problem 6.] Problem 6 described the initial conditions that would lead to the two
normal modes of a coupled system. For example, if you started with the initial conditions x1(0) = x2(0) = 1
that would put the system in the first normal mode, oscillating with amplitude 1.

(a) In a similar way, give a set of initial conditions x1(0) and x2(0) that would put the system in the second
normal mode, with the balls again oscillating with amplitude 1.

(b) Now suppose the system starts with initial conditions x1 = 0, x2 = 1. Write this initial condition as a
combination of the two normal modes you found in Problem 6. Use A and B for the normal modes. Your
answer should be in the form aA+ bB, but with specific numbers for a and b.

(c) Is the solution in Part (b) a normal mode? Why or why not?

8. [This problem depends on Problem 6.] With k = 8 N/m and m = 4 kg the problem described in Problem 6
is described by the equations ẍ1 = −4x1 + 2x2, ẍ2 = 2x1 − 4x2.

(a) Solve these equations numerically with initial conditions corresponding to each of the normal modes you
found. Plot the solutions and describe the behavior of x1 and x2 in each case.

(b) Repeat Part (a) with initial conditions corresponding to 2 times one normal mode plus 3 times the other.

(c) Is the solution you plotted in Part (b) a normal mode solution? Why or why not?
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9. The picture shows a “double pendulum”: a pendulum hanging from a pendulum. Consider the following
possibilities.

(a) The top pendulum swings with a period of 2 s, and the bottom pendulum swings from the top pendulum
with a period of 2 s. Is this a normal mode? Is the resulting motion periodic?

(b) The top pendulum swings with a period of 2 s, and the bottom pendulum swings from the top pendulum
with a period of 3 s. Is this a normal mode? Is the resulting motion periodic?

(c) The top pendulum swings with a period of 2 s, and the bottom pendulum swings from the top pendulum
with a period of π s. Is this a normal mode? Is the resulting motion periodic?

10. In this problem you will derive the equations of motion for the three-spring system. The only physics you need
is F = ma and the fact that a spring exerts a force F = −kx where k is the spring constant and x is the
displacement.

(a) The position x1 = x2 = 0 represents the equilibrium position. Now imagine that Ball 1 is at this position
precisely, but Ball 2 is slightly to the right of this position, as shown in Figure 1. Which springs now push
on Ball 1, and in which directions? Which springs now push on Ball 2, and in which directions?

(b) Now imagine that Ball 1 is displaced to the right by a distance x1, and Ball 2 is displaced to the right by
x2. This time the answers will be quantitative, and they will include the three spring constants k1, k2,
and k3. We begin with Ball 1.

i. The force of Spring 1 on Ball 1 depends only on the position x1 (the other position is irrelevant).
Write a formula for this force.

ii. How much is Spring 2 stretched? Your answer should be a function of x1 and x2. For example, if
both balls are displaced the same amount to the right then Spring 2 isn’t stretched at all. As a check
on your answer, make sure it gives a positive answer when Spring 2 is longer than its equilibrium
length, a negative answer when it is shorter, and 0 when Spring 2 is at its equilibrium length (neither
stretched nor compressed.)

iii. Using your answer to Part (ii), write a formula for the force of Spring 2 on Ball 1.

iv. Putting the two forces together and using F = ma, write a differential equation for x1(t). Be sure
you have the sign of each force correct. Hint: One way to check yourself is to plug in numbers and
make sure you get Equation 1!

(c) Repeat Part (b) for x2.

11. Plug Equations 3 into Equations 1 and 2 to confirm that they are valid solutions for any constant A.

12. Our treatment of the three-spring problem was incomplete because we looked only at the cosine parts of the
solutions, ignoring the sines.

(a) Show that the following equations are valid solutions to Equations 1 and 2 for any constants A1 and A2.

x1(t) = A1 cos
(√

2 t
)

+A2 sin
(√

2 t
)

x2(t) =
2

3
A1 cos

(√
2 t

)
+

2

3
A2 sin

(√
2 t

) (9)

(b) Show that the initial conditions ẋ1(0) = ẋ2(0) = 0 lead to A2 = 0 and therefore to the solution we used
in the Explanation.
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(c) Do Equations 9 represent a normal mode of the system?

(d) The three-spring problem has four initial conditions: the initial position and velocity of Ball 1 and the
initial position and velocity of Ball 2. What must be true of all the initial conditions for the balls to follow
Equations 9?

13. In our second example we created a new solution by combining the two normal modes, along with carefully
choosing values of the arbitrary constants.

(a) Show that Equations 5 are a valid solution to Equations 1 and 2.

(b) Use Equations 5 to find x1(0) and x2(0) and confirm that they meet the intended initial conditions.

14. Arguably the most important point in our treatment of the three-spring problem—both for understanding
normal modes, and for setting up linear algebra—is creating new solutions as linear combinations of the two
solutions we found. (This works for any linear homogeneous differential equation.)

(a) Show that if you add Equations 3 to Equations 4 the resulting functions are valid solutions to Equations 1
and 2 for any values of A and B.

(b) What are the initial positions x1(0) and x2(0) for these generalized solutions? Your answers will be
functions of A and B.

(c) Now turn it around; starting with your answers to Part (b), solve for A and B as functions of x1(0)
and x2(0). In doing so, you find a direct way to meet any given initial positions, as we did in our third
example. (Note that we still do not have a fully general solution to the three-spring problem. We left off
all the sine terms based on our initial assumption that both balls start at rest, so we don’t have to worry
about v1(0) and v2(0).)

(d) Write the solution if you pull Ball 1 to the left by a distance of 1 and Ball 2 to the right by the same
amount and release them.

15. A key point in our explanation is that a normal mode represents simple oscillation with one frequency, but
that combinations of normal modes are generally not simple or periodic. Often they do not appear to be built
from sines and cosines (even though they are). Graph each function below from t = 0 to t = 30.

(a) sin
(√

2 t
)
.

(b) sin
(√

5 t
)
.

(c) sin
(√

5 t
)

+ sin
(√

2 t
)
.

(d) 3 sin
(√

5 t
)

+ 2 sin
(√

2 t
)
.

16. In this problem you will solve Equations 1 and 2 by guess and check.

(a) Plug in the solution x1 = C1 cos(2t), x2 = C2 cos(2t). Write down and solve the resulting two linear
equations for C1 and C2. What motion does the resulting solution describe?

(b) Plug in the solution x1 = C1 cos
(√

3 t
)
, x2 = C2 cos

(√
3 t

)
. Write down and solve the resulting two linear

equations for C1 and C2. What motion does the resulting solution describe?

(c) Plug in the solution x1 = C1 cos(ωt), x2 = C2 cos(ωt) where ω is a constant. Show that for any value of
ω, you can solve the resulting linear equations with C1 = C2 = 0.

(d) Now plug in the solution x1 = C1 cos
(√

5 t
)
, x2 = C2 cos

(√
5 t

)
. Show that the resulting linear equations

both reduce to the same equation, and are therefore solved as long as C1 and C2 are in the correct ratio.
This ratio should lead you to our second normal mode.

17. In this problem you will walk through the entire three-spring problem, from the beginning, with different masses
and spring constants. The differential equations you will solve are:

d2x1
dt2

= −5x1 + 8x2 (10)

d2x2
dt2

= x1 − 3x2 (11)
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(a) The functions x1 = A cos t, x2 = kA cos t provide a valid solution to Equations 10 and 11 for any value of
A, provided you choose the right value of k. Show that this works by finding the right value of k.

(b) Show that the functions x1 = C cos(2t), x2 = kC cos(2t) do not provide a valid solution unless C = 0.

(c) Show that the functions x1 = D cos
(√

2 t
)
, x2 = kD cos

(√
2 t

)
do not provide a valid solution unless

D = 0.

(d) The functions x1 = B cos
(√

7 t
)
, x2 = kB cos

(√
7 t

)
provide a valid solution to Equations 10 and 11 for

any value of B, provided you choose the right value of k. Show that this works by finding the right value
of k.

(e) Parts (a) and (d) represent solutions, but are they normal modes? How can you tell?

(f) What initial conditions are represented by the solutions to Parts (a) and (d)?

(g) Find a solution to match the initial conditions x1 = −2, x2 = 2.

(h) Find a solution to match the initial conditions x1 = 10, x2 = 2.

18. Each of the scenarios below refers to a solution to Equations 1–2. For each one have a computer create
an animation of two moving balls. Draw them as balls oscillating about their equilibrium positions, which you
should separate by a distance of 3.

(a) Show the two balls oscillating in the first normal mode, with A = 2.

(b) Show the two balls oscillating in the second normal mode, with B = 2.

(c) Show the two balls oscillating in a sum of the two normal modes with A = B = 1.

(d) Describe the motion in each of the three cases.
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