
Chapter: Methods of Solving Ordinary Differential Equations

Computer Problems for Methods of Solving Ordinary Differential Equa-
tions

1. Have a computer make a phase portrait for the system dx/dt = x + y, dy/dt = −2y. Clearly indicate
critical points and separatrices. Make sure your phase portrait has enough trajectories to see the behavior in
each region, and that it includes arrows showing the directions of the trajectories.

In Problems 2–7 you will be given a second order differential equation. Rewrite it as two coupled first order
equations. Have a computer draw the phase portrait for those two equations, and use that phase portrait to predict
the possible time evolution of the system. A good answer would look like “If it starts with x > 5 moving to the right
it will move in a positive direction forever. If it starts at x > 5 at rest or moving left slowly enough it will start
moving right and continue that way forever. If it starts at x < 5 then. . . ”

2. x′′(t) + 9x(t) = 0

3. x′′(t) + 5x′(t) + 6x(t) = 0

4. x′′(t) + 5x′(t) + 6x(t) = 2

5. x′′(t)− 5x′(t) + 6x(t) = 2

6. x′′(t) + x3 = 0

7. x′′(t) + tan(4πx) = 0

8. Inflationary Cosmology According to the theory of “inflation,” the early universe went through a period
during which virtually all of the energy was in the form of a “scalar field.” You don’t need to know what a
scalar field is to solve this problem. All you need to know is that in the simplest model of inflation the field φ

obeys the differential equation φ̈+m2φ+
√

12πG(φ̇2 +m2φ2) = 0.

(a) Define v = φ̇ and rewrite this second order equation as two coupled first order equations for φ and v.

(b) What is the one critical point for this system?

(c) Have a computer draw a phase portrait for the system. You can set the constants G and m equal to
1. There are two separatrices. Where do they begin and end? (In each case one of the answers is “at
infinity.”) Are they attractive or repulsive?

(d) For a typical trajectory, describe the evolution of the system. What happens at early times, middle times,
and late times?

9. You’re conducting experiments on a flat table. The experiment produces varying amounts of heat in
different places, and a series of measurements tells you that ∂T/∂x = sin(y2 + x) + x cos(y2 + x) and ∂T/∂y =
2xy cos(y2 + x). Sketch the isotherms (curves of constant temperature) on the surface.
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The two problems below are a set; the first should be done without a computer and the second is a computer-based
follow up.

10. Consider a moth flying at speed v across the street towards a streetlight, while a wind blows it along the street
at speed s. We put the streetlight at the origin, the moth’s original position at (L, 0), and the wind direction
as the positive y direction. To set up the equation for the moth’s trajectory y(x), start with the simplest case
where s = 0, so there is no wind.

(a) The moth’s horizontal speed is the x-component of its velocity. Write an equation for dx/dt in terms of
its speed v and its position (x, y).

(b) The moth’s vertical speed is the y-component of its velocity. Write an equation for dy/dt in terms of its
speed v and its position (x, y).

(c) The chain rule says that dy/dx = (dy/dt)/(dx/dt). Based on everything you have written above, write a
differential equation for the moth’s trajectory y(x). Your answer should only depend on x and y.

(d) Solve that differential equation by separation of variables and show that the resulting motion is a straight
line toward the origin.

Now you’ll repeat the process with a nonzero wind speed. This has no effect on the moth’s x-velocity and
simply adds s to its y-velocity.

(e) Redo the calculations until you have a new equation for dy/dx in terms of x, y, v, and s.

(f) You should be able to rewrite your equation as a homogeneous differential equation. Do so and then solve
to find y(x), using the initial condition that the moth starts at position (L, 0). You may find it helpful to

know that
∫ (

1 + x2
)−1/2

dx = ln
∣∣x+

√
1 + x2

∣∣+ C.

(g) Check that your answer to Part (f) includes your answer to Part (d) as a special case.

11. [This problem depends on Problem 10.] Draw graphs of the moth’s trajectory for v >> s, v just a little
bigger than s, and v << s. Explain why the graphs make sense physically in each of those cases.
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12. Walk-Through: Differential Equation by Laplace Transform. In this problem you will solve following
the differential equation.

3
d2x

dt2
+ 10

dx

dt
− 8x = δ(t− 5) with initial conditions x(0) = 2, x′(0) = 1

(a) Take the Laplace transform of both sides.

i. On the right side of the equation, find the Laplace transform.

ii. On the left side of the equation, apply the properties of Laplace transforms: first linearity, and then
the derivative properties. Use X to represent L[x], and use the values given for x(0) and x′(0).

(b) Solve your resulting algebra equation to find the function X(s).

(c) Use a computer to find the inverse Laplace transform of X(s). Write the function x(t) that solves the
original equation.

In Problems 13–22 solve the given differential equation subject to the given initial conditions. Use the three-step
Laplace transform method modeled in Problem 12 even if other methods would be easier (which they will in some
cases). Computers should be used only to find Laplace and inverse Laplace transforms as necessary.

13. x′′(t) + 9x(t) = 0 with x(0) = 2, x′(0) = 5

14. x′′(t)− 9x(t) = 0 with x(0) = 2, x′(0) = 5

15. x′′(t)− 6x′(t) + 5x(t) = e5t with x(0) = x′(0) = 0

16. y′(t) +
∫ t

0
y(τ)dτ = e−t with y(0) = 0

17. 2y′′(t)− 7y′(t)− 4y(t) = et sin t with y(0) = 2, y′(0) = 3

18. y′′(t) +
∫ t

0
y(τ)dτ = 1 with y(0) = y′(0) = 0

19. 3f ′′(t)− f ′(t)− 4f(t) = H(t− 3)−H(t− 4), f(0) = 1, f ′(0) = −1

20. g′′(t)− 25g(t) = δ(t− 1) + 3δ(t− 2), g(0) = 7, g′(0) = 5

21. h′′(t)− 6h′(t) + 8h(t) = [H(t− 1)−H(t− 2)] e−t, h(0) = 0, h′(0) = 0

22. h′′(t)− 4h(t) = [H(t)−H(t− π)] sin t, h(0) = 0, h′(0) = 0

In Problems 23–26 use the three-step Laplace transform method to solve the given coupled differential equations
and initial conditions, using a computer only to find inverse Laplace transforms as necessary.

23. dx/dt = 3x+ 5y; dy/dt = x− y; x(0) = 4; y(0) = 2

24. dx/dt = 2x+ y; dy/dt = 3x+ 4y; x(0) = 1; y(0) = −1

25. d2x/dt2 = 5x− 3y; d2y/dt2 = 4x− 2y; x(0) = 6; y(0) = 2; x′(0) = y′(0) = 0

26. d2x/dt2 = −10x+ 3y; d2y/dt2 = 3x− 2y; x(0) = 10; y(0) = 40; x′(0) = 30; y′(0) = −20
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27. The inverse Laplace transform of
√

1 + s/(s2 + 2s+ 2) is a mess, but it has the same qualitative behavior
as the inverse Laplace transform of 1/(s2 + 2s + 2). Check this by asking a computer for the inverse Laplace
transform of

√
1 + s/(s2 + 2s + 2). Then have the computer plot the inverse Laplace transforms of these two

functions on the same plot. In what ways are they similar, and in what ways are they different? (Note: your
inverse transform may appear to be complex, but it is real in the domain t ≥ 0 which is all that matters.)

28. In this problem you’ll solve the differential equation ÿ + ẏ + y = sin(t)/t. Feel free to start by trying to
solve it without Laplace transforms if you really want to appreciate why Laplace transforms are sometimes the
best method to use.

(a) Solve this equation with initial conditions y(0) = ẏ(0) = 1 to find the Laplace transform Y (s). You can
use a computer to find L [sin(t)/t] but you should be able to do the rest by hand.

(b) Looking at Y (s), explain how you can know that y(t) should oscillate with a decaying amplitude. What
is the period of that oscillation?

(c) Have a computer take the inverse Laplace transform of your solution Y (s) and plot the resulting function
y(t). Check that it is oscillation with a decaying amplitude and check if its period matches your prediction.

29. A 1 kg block is attached to a spring with spring constant k. It experiences a damping force F = −bv. Take
k = 8 N/m and b = 6 N·s/m.

(a) Write a differential equation for the position x(t) of the block.

Now suppose an 8 N external force is applied to the block for five seconds. Before and after those five seconds
the only forces on the block are the spring force and the damping force. (During those five seconds there are
three forces on the block: spring, damping, and external.)

(b) Write a differential equation for the block that includes all three forces acting on it.

(c) Assuming the block is at rest at equilibrium prior to the start of the external force, solve the equation
you wrote in Part (b). Your answer will be in the form X(s), the Laplace transform of the position.

(d) Without calculating the inverse Laplace transform, does this describe exponential growth, exponential
decay, or oscillations? How can you tell?

(e) Evaluate the inverse Laplace transform to find the function x(t) that describes the motion of the
block.

(f) Plot x(t). Describe the behavior of the system during the first five seconds and after the first five
seconds. Explain why each of these behaviors make sense in the context of the problem.
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30. Two coupled pendulums are shown below.

The equations describing this system depend on the angles θ1 and θ2, the gravitational acceleration g, and the
length L of the strings.

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇22 sin(θ1 − θ2) + 2
g

L
sin θ1 = 0

θ̈2 + θ̈1 cos(θ1 − θ2)− θ̇21 sin(θ1 − θ2) +
g

L
sin θ2 = 0

These equations are nonlinear and cannot be solved using the methods in this section. For small oscillations,
however, you can assume θ1, θ2, and all of their derivatives remain small, and thus approximate this with a set
of linear equations.

(a) Replace all the trig functions with the linear terms of their Maclaurin series expansions. Then eliminate
any remaining nonlinear terms. The result should be two coupled, linear differential equations.

(b) Now let θ1(0) = α, θ2(0) =
√

2 α, θ̇1(0) = θ̇2(0) = 0. Take the Laplace transform of your ODEs and use
them to get simultaneous algebra equations for L[θ1(t)] and L[θ2(t)].

(c) Solve those algebra equations and then take the inverse Laplace transforms of your answers to find
θ1(t) and θ2(t). (You can do the algebra by hand but it’s tedious, so we recommend letting the computer
do it for you.)
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31. The Transfer Function An RLC circuit, a mass on a damped simple harmonic oscillator, and a variety of
other systems obey the equation x′′(t) + a1x

′(t) + a0x(t) = f(t). The constants a1 and a0 define the properties
of the system (e.g. resistors, capacitors, and inductors, or damping force and spring constant). The driving
term f(t) represents the external input to the system (e.g. voltage source or external force). You can solve
this equation for any particular a0, a1, and f(t) with any set of initial conditions. For the homogeneous initial
conditions x(0) = x′(0) = 0, however, you can also derive a general relation between the input f(t) and the
output x(t).

(a) Solve this differential equation using Laplace transforms. Your answer will give X(s) as a function of a0,
a1, and F (s), the Laplace transform of the driving term.

(b) The transfer function G(s) is defined as X(s)/F (s), or (roughly speaking) output/input. Calculate G(s)
as a function of a0 and a1. (The transfer function is more often designated H(s) but we’re already using
that for the Heaviside function. There just aren’t enough letters.)

The transfer function only depends on the properties of the system, not on the driving term f(t). The rest of
this problem will focus on a 1 kg block attached to a spring with spring constant 3 N/m, with a damping term
Fd = −bv, b = 2 N·s/m.

(c) Write the differential equation for this system and find its transfer function. We have not told you whether
there is an external force or not, because G(s) doesn’t depend on it.

(d) For each of the following driving forces fe, calculate X(s) from the relation X(s) = G(s)F (s). Then
use a computer to calculate the inverse Laplace transform x(t).

i. fe = δ(t− 1)

ii. fe = e−2t

iii. fe = sin t

32. The equation x′′(t) + 5x′(t) + 4x = 2 sin(2t) with initial conditions x(0) = x′(0) = 0 represents a damped,
driven oscillator.

(a) Find the solution by using guess and check.

(b) Find the solution again by using variation of parameters.

(c) Find the general solution a third time by using a Laplace transform. Use a computer only to find the
inverse transform at the end (and, if you want, to take an integral in the middle).
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33. The moon is about 384,000 km from Earth. A body in between the Earth and the moon experiences
gravitational pulls in opposite directions from the two bodies. If we place the origin at the center of the Earth
then the object’s position obeys the differential equation

d2x

dt2
= −2.98

x2
+

.0366

(3.84− x)2

measuring distance in 100,000s of kilometers and time in days. (You can do the problem in SI units, but the
numbers are messier.)

(a) Explain why this equation is only valid for objects in between the Earth and the moon. In other words,
how can you tell that it must give incorrect values if the object is at x < 0 (behind the Earth) or at
x > 3.84 (beyond the moon)?

(b) Find the value of x at which the Earth’s and moon’s pulls exactly balance. Explain physically why you
would expect this equilibrium value to be stable or unstable.

(c) Draw a phase portrait for this equation and confirm that there is an equilibrium point where you predicted
and that it has the character you predicted.
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