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10.6 Linearly Independent Solutions
and the Wronskian
The “Wronskian” is a tool that can help you determine if you have found linearly indepen-
dent solutions to a differential equation. That, in turn, helps you know when you have found
the general solution.

10.6.1 Discovery Exercise: Linearly Independent Solutions
and the Wronskian

1. Each of the following functions is a valid solution to the differential equation y′′(x) +
k2y(x) = 0. But four of these functions represent (in different forms) the general solu-
tion, and the other three do not. Which ones?
(a) y(x) = sin(kx)
(b) y(x) = A sin(kx) + B cos(kx)
(c) y(x) = A sin(kx + 𝜙)
(d) y(x) = eikx
(e) y(x) = Aeikx + B sin(kx)
(f) y(x) = Aeikx + Be−ikx
(g) y(x) = Aeikx+𝜙

See Check Yourself #66 in Appendix L

2. Each of the following functions is a valid solution to the differential equation
4x2y′′(x) + y(x) = 0. But two of these functions represent (in different forms) the
general solution, and the other three do not. Which ones?
(a) y(x) =

√
x

(b) y(x) =
√
x ln x

(c) y(x) = A
√
x + B

√
x ln x

(d) y(x) = A
√
x + B

√
x(1 + ln x)

(e) y(x) = (A + B)
√
x ln x

10.6.2 Explanation: Linearly Independent Solutions
and the Wronskian

The differential equation y′′ + k2y = 0 has two solutions: y1 = sin(kx) and y2 = cos(kx). Those
are both valid individual solutions, so superposition says we can combine them to form
another solution.

y = Ay1(x) + By2(x) = A sin(kx) + B cos(kx) (10.6.1)

Equation 10.6.1 is not just a solution; it is the general solution. All solutions can be written
as forms of Equation 10.6.1 with the proper choices of the constants A and B.
Let’s play that discussion back with a slight change. The differential equation y′′ + k2y = 0

has two solutions: y1 = 3 sin(kx) and y2 = −5 sin(kx). Those are both valid individual solutions,
so superposition says we can combine them to form another solution.

y = Ay1(x) + By2(x) = 3A sin(kx) − 5B sin(kx) (10.6.2)

Equation 10.6.2 is a valid solution, but it is not the general solution. It’s just an obfuscated
way of writing A sin(kx). Many valid solutions, such as y = 2 cos(kx), cannot fit into this form.
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The second solution is not general because its two solutions y1 and y2 are linearly dependent.
They are of course not the same function, but one is a constant multiple of the other.

Definition and Use: Two Linearly Dependent Functions

Two functions y1(x) and y2(x) are “linearly dependent” if and only if y1 = ky2 for some constant k.3
If y1(x) and y2(x) are solutions to a linear second-order homogeneous differential equation, then

Ay1(x) + By2(x) is also a solution. But it is the general solution if and only if y1 and y2 are linearly
independent functions.

In our examples above it was obvious which functions were linearly dependent. In other
cases it can be harder to tell, but there is a general test you can apply.

Definition and Use: The Wronskian

The “Wronskian” of two functions y1(x) and y2(x) is:

W (x) = y1y′2 − y
′
1y2

Given a linear, second-order, homogeneous differential equation y′′(x) + a1y′(x) + a0y(x) = 0 where
a1 and a0 are continuous functions on an open interval I (this interval might be “all real numbers”
but it doesn’t have to be), and given two functions y1(x) and y2(x) that solve this equation on I…

∙ The Wronskian W (x) of y1 and y2 is zero everywhere in I , or it is non-zero everywhere in I .
(It cannot be zero for some x-values and non-zero for others.)

∙ If W (x) = 0 then the two solutions are linearly dependent.
∙ IfW (x) ≠ 0 then the two solutions are linearly independent, and Ay1(x) + By2(x) is therefore
the general solution.

EXAMPLE The Wronskian

In Chapter 12 we will show that the linear second-order homogeneous differential
equation (1 − x2)y′′ − 2xy′ + l(l + 1)y = 0 on the open interval −1 < x < 1 has the
following two solutions.

y1 = 1 − l(l + 1)
2!

x2 + l(l + 1)(l − 2)(l + 3)
4!

x4 − l(l + 1)(l − 2)(l + 3)(l − 4)(l + 5)
6!

x6 +…

y2 = x −
(l − 1)(l + 2)

3!
x3 + (l − 1)(l + 2)(l − 3)(l + 4)

5!
x5 − (l − 1)(l + 2)(l − 3)(l + 4)(l − 5)(l + 6)

7!
x7 +…

The function Ay1(x) + By2(x) represents the general solution if and only if y1 and y2
are linearly independent—that is, if their Wronskian is non-zero. We begin by taking
derivatives.

y′1 = −l(l + 1)x + l(l + 1)(l − 2)(l + 3)
3!

x3 − l(l + 1)(l − 2)(l + 3)(l − 4)(l + 5)
5!

x5 +…

y′2 = 1 − (l − 1)(l + 2)
2!

x2 + (l − 1)(l + 2)(l − 3)(l + 4)
4!

x4 − (l − 1)(l + 2)(l − 3)(l + 4)(l − 5)(l + 6)
6!

x6 +…

3Technically the function f (x) = 0 is linearly dependent with all other functions. Our definition therefore leaves
out the case y2(x) = 0 and y1(x) ≠ 0. But we are looking here for non-trivial solutions to homogeneous differential
equations, so we’re going to ignore the zero function for the rest of this section.
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The Wronskian is W (x) = y1y′2 − y
′
1y2. Multiplying every term in y1 by every term in

y′2 does not look practical, but remember that we don’t need to prove that W (x) = 0
for all x-values; any x-value in our interval can serve as a representative for the entire
interval. And it’s easy to check at x = 0. The first term of y1y

′
2 is 1. Every other term of

y1y
′
2, and every term of y′1y2, will go to zero at x = 0. We conclude that W (0) = 1 which

means y1 and y2 are linearly independent, so we have the general solution.

We hope the example above demonstrates that the Wronskian is both easy and powerful.
But its use rests on the three claims we made in the box “Definition and Use: The Wron-
skian” and none of these three claims is obvious. We are going to establish the connection
between the Wronskian and linear dependence in two ways. The explanation below presents
a coherent way to think about what the Wronskian represents and why it demonstrates linear
dependence. That conceptual discussion will then allow us to figure out how to generalize
the Wronskian to more than two functions. In Problems 10.116–10.117 you will prove two of
these claims in a different way: more direct, but possibly less useful in the long run.

Why are Those Three Assertions True?
In justifying the claims we made about the Wronskian, it’s easiest to start with the last one.
If two functions y1 and y2 are linearly dependent then y1 = ky2. That in turn means y′1 = ky

′
2,

and you can easily plug these in to the definition of the Wronskian and conclude thatW = 0.
Thus if W ≠ 0, the two functions are linearly independent.
The second claim is the converse of the third: ifW = 0 everywhere in the interval I then y1

and y2 must be linearly dependent in that interval. First let’s rewrite the assertion thatW = 0
at some point x = a.4

W (a) = 0 ⇔ y1(a)y′2(a) = y
′
2(a)y1(a) ⇔

y1(a)
y2(a)

=
y′1(a)
y′2(a)

(10.6.3)

At the point x = a, y1 = ky2 for some k. (That’s always true unless y2(a) = 0.) Equation 10.6.3
tells us that if the Wronskian is zero, the slope of y1 is also k times the slope of y2. And now
we arrive at the heart of the argument:

y1

y2

x

FIGURE 10.4 Two linearly dependent
functions. If y2 = 2y1 then at each point y2
must be rising or falling twice as fast as y1.

If y1 starts out k times higher than y2 and increases
k times faster than y2, then it will stay k times higher
than y2.
Of course that’s only true for a moment. But

remember the first claim: if W = 0 anywhere in
interval I , then W = 0 everywhere in the inter-
val. So as the function climbs with y′1∕y

′
2 remaining

always the same as y1∕y2, the functions will retain
the relationship y1 = ky2 (as in Figure 10.4), which
is what we’re trying to show. You can make this
particular argument more rigorous by treating the
curve as a succession of line segments, and then
taking a limit; you will reach this same conclusion
in a slightly different way in Problem 10.116.

4Our algebra is not valid if y2 = 0 or y′2 = 0, but it’s not hard to show that the basic conclusions still hold in those
cases.
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The two arguments we’ve made so far apply to any two smooth functions5 y1 and y2. If
they are linearly dependent then W = 0, and if W = 0 throughout some interval I then the
functions are linearly dependent in that interval. What remains is the first claim: W = 0
either everywhere or nowhere in I . That claim is not guaranteed for two arbitrary functions,
but it is guaranteed if those functions are both solutions to the same linear second-order
differential equation.

Why? We said above y1 will continue to be proportional to y2 if y
′
1 continues to be pro-

portional to y′2. By the same logic, y
′
1 and y

′
2 will continue to be proportional if y′′1 and y′′2

are proportional. (For example, the functions ex and x + 1 have the same value and first
derivative at x = 0, but they diverge because their second derivatives are different.)

This is where the differential equation comes in. A second-order linear differential
equation can be written y′′ = −a1(x)y′ − a0(x)y. If you know y and y′ at a point, then
the differential equation tells you y′′. If y1 and y2 are both solutions to the same such
equation and y1∕y2 = y′1∕y

′
2 = k, then y

′′
1 ∕y

′′
2 must also equal k. By differentiating both sides

of the differential equation you can get an expression for y′′′ and similarly conclude that
y′′′1 ∕y′′′2 = k, and so on up to arbitrarily high orders. Since all the higher order derivatives are
proportional, y1 will continue to grow k times faster than y2, andW will continue to be zero.

Problem 10.117 will present a more algebraic and more rigorous proof of the first claim.
In our opinion, however, this hand-waving argument gives more useful intuition for the
Wronskian than the algebraic proof, which is why we put this one in the explanation and
that one in the problems.

The Wronskian as a Determinant, or, What if There are More than Two Functions?
If you remember how to take the determinant of a 2 × 2 matrix then it’s easy to see that the
following determinant is the Wronskian of y1 and y2.

W =
|||||
y1 y2
y′1 y′2

|||||
(10.6.4)

Sometimes determinants appear as helpful mnemonics, such as with the cross product or
curl—useful, but coincidental—but this is far more than that. Every column in a matrix is a
vector. If the determinant of the matrix is zero, then these vectors are linearly dependent.
That is one of the primary purposes of the determinant, and look what it means here.

W = 0 ⇐⇒ <y1, y
′
1> = k<y2, y

′
2> ⇐⇒ y1 = ky2, y′1 = ky

′
2

We have already seen that, because y1 and y2 are solutions to the same second-order lin-
ear ODE, those two relationships are enough to guarantee that the functions are linearly
dependent. The payoff for this approach is that it generalizes seamlessly to higher levels. A
third-order equation requires three linearly independent functions, a fourth-order requires
four, and so on. So we need a general method for determining if n functions are linearly
independent—provided, once again, that they are all solutions to the same nth-order linear
differential equation.

What does that even mean? If two vectors A⃗ and B⃗ are linearly dependent, then A⃗ = kB⃗
for some scalar k. For three or more vectors linear dependence is subtler: if 2A⃗ − 3B⃗ = 10C⃗
then the vectors A⃗, B⃗ and C⃗ are linearly dependent even if no two of them are.

The same relationship holds for functions. Consider the functions e6x , sin x, and 2e6x −
3 sin x. Any two of these functions are linearly independent, but the set of three functions is
not. If all three of them solved the same third-order linear homogeneous ODE, you could
not combine them to form the general solution.

5If they aren’t differentiable then W isn’t defined.
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So it can become a subtle business to look at three (or more!) functions and determine
if they are linearly dependent. But the Wronskian generalizes to any level because determi-
nants themselves generalize to any level. Consider three functions y1(x), y2(x), and y3(x). The
Wronskian of these three functions is given by the following determinant.

W (x) =
|||||||

y1(x) y2(x) y3(x)
y′1(x) y′2(x) y′3(x)
y′′1 (x) y′′2 (x) y′′3 (x)

|||||||

If the Wronskian is zero then the vectors <y1, y
′
1, y

′′
1 >, <y2, y

′
2, y

′′
2 >and <y3, y

′
3, y

′′
3 > are linearly

dependent. If we also know that these three functions are solutions to the same third-order
linear homogeneous differential equation, then their higher order derivatives are all lin-
ear functions of these three numbers. So the linear dependence of these three variables is
sufficient to conclude that the functions are linearly dependent.

10.6.3 Problems: Linearly Independent Solutions
and the Wronskian

In Problems 10.108–10.114 you will be given a linear
differential equation and a set of solutions valid on
the interval (−∞,∞). (You won’t actually use the
differential equation, but we include it to emphasize
that this technique only applies to functions that are
solutions to a common ODE.) Use the Wronskian to
determine if the functions are linearly independent
or dependent.

10.108 y′′ = −k2y, y1(x) = sin(kx), y2 = cos(kx)
10.109 y′′ = −k2y, y1(x) = 3 sin(kx), y2 = −5 sin(kx)
10.110 y′′ = −k2y, y1(x) = sin(kx), y2 = eikx

10.111 y′′ = −k2y, y1(x) = sin(kx), y2 = cos(kx),
y3 = eikx

10.112 y′′′ − 6y′′ + 11y′ − 6 = 0, y1(x) = 4ex −
2e2x + e3x , y2(x) = −ex + 2e2x − e3x ,
y3(x) = 5ex + 2e2x − e3x

10.113 y′′ − 2xy′ + 2ky = 0,

y1(x) = 1 − 2k
2!
x2 + 22k(k − 2)

4!
x4

−2
3k(k − 2)(k − 4)

6!
x6 +… ,

y2(x) = x −
2(k − 1)

3!
x3 + 22(k − 1)(k − 3)

5!
x5

−2
3(k − 1)(k − 3)(k − 5)

7!
x7 +…

10.114 y1(x) = x − 2x2 − (1∕3)x3 +…, y2(x) = 3 +
3x − 33x2 + 35x3 +…, y3(x) = 3 − 27x2 +
36x3 +… (For this one we are not giving
an ODE or a pattern for the rest of the
series. Just assume you have three series
solutions that start like this.)

10.115 Let f (x) = 2ex and g (x) = sin x + cos x
on the interval [−𝜋, 𝜋].
(a) Calculate the Wronskian for

these two functions.
(b) Evaluate the Wronskian at x = 0.
(c) Evaluate the Wronskian at x = 𝜋∕2.
(d) Explain why your answers don’t con-

tradict what we’ve said about the
properties of the Wronskian.

(e) Are these two functions linearly
dependent on this interval?

10.116 In this problem you will prove the sec-
ond of our claims about the Wronskian:
if the Wronskian of two functions is zero
throughout an interval I then the two func-
tions must be linearly dependent.
(a) We defined two linearly dependent func-

tions by the equation y1 = ky2 for some
constant k, which we can also write as:

y1(x)
y2(x)

= k

Take the derivative with respect to x
of both sides of that equation.

(b) Based on your answer to Part (a),
argue that if W = 0 then y1 and y2
must be linearly dependent.

(c) Why would your argument above not
work if W = 0 only at a point, and not
within a non-zero interval? If you’re stuck
you may find it helpful to look at our dis-
cussion of the functions ex and 1 + x in
the Explanation (Section 10.6.2).
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10.117 In this problem you will prove the first
of our three claims about the Wron-
skian. If two functions y1(x) and y2(x)
are both solutions to the same equation
y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0 on an
open interval I then the Wronskian
W = y1y′2 − y

′
1y2 is zero everywhere in I ,

or it is non-zero everywhere in I . The
strategy will be to write and solve an ODE
for W (x).
(a) Calculate W ′. Your answer should be

in terms of y1, y2, y
′′
1 , and y

′′
2 . Simplify

your answer as much as possible.
(b) Since you know y1 is a solution to the

ODE you can rewrite y′′1 in terms of y1
and y′1. Use this substitution and the
corresponding one for y′′2 to write W

′

in terms of y1, y2, y
′
1, and y

′
2. Simplify

your answer as much as possible.
(c) Replace y1y

′
2 − y

′
1y2 with W in your

expression for W ′. The result should
only depend on W and a1.

(d) You just wrote a linear first-order dif-
ferential equation for W (x). Solve this
equation by separating variables to
find a formula for W (x) in terms of the
unknown function a1(x). Include an arbi-
trary constant in front of your solution.

(e) Explain how you can tell by looking
at your solution that W (x) is never
zero unless W (x) is always zero.

10.118 In this problem you will fill in some of the
missing algebra in our discussion of the
Wronskian. Consider two functions y1(x)

and y2(x) that solve the following equation.

y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0 (10.6.5)

Suppose that at x = c we know two facts:
y1(c) = ky2(c) and y′1(c) = ky

′
2(c). (In the

explanation we called the point x = a but
we don’t want to confuse that a with the
coefficient functions in the ODE.)
(a) Show that y′′1 (c) = ky

′′
2 (c). Hint: This

is not guaranteed without the dif-
ferential equation!

(b) Take the derivative of both sides
of Equation 10.6.5.

(c) Show that y′′′1 (c) = ky′′′2 (c).
Using similar logic you can easily

show that y′′′′1 (c) = ky′′′′2 (c) and so on
for all higher derivatives.

10.119 Consider two functions f (x) and g (x)
such that f (0) = 3g (0).
(a) First, suppose both functions are lines.

What must be the relationship between
their first derivatives (slopes) if f (x)
is to continue being three times g (x)
as they move to the right?

(b) If f (x) and g (x) are not necessarily
lines, then the relationship between
f ′(0) and g ′(0) that you wrote in
Part (a) is not enough to show that
f (x) = 3g (x). Why not?

(c) If f (x) = 3g (x) for all x-values, then
what must be the relationship
between f ′′(0) and g ′′(0)?


