
Chapter: Special Functions and ODE Series Solutions

Computer Problems for Special Functions and ODE Series Solutions

The two problems below are a set; the first should be done without a computer and the second is a computer-based
follow up.

1. The function y = lnx cannot be expanded out into a Maclaurin series (why?), but it can be expanded into a
Taylor series around x = 1. Beginning with y =

∑
cn(x − 1)n find the particular solution, up to the fourth

power, of the equation 4y′′ + y = lnx with conditions y(1) = 8, y′(1) = 1.

2. [This problem depends on Problem 1.]

(a) Have a computer get the exact solution to 4y′′ + y = lnx with initial conditions y(1) = 0, y′(1) = 1.
Comment on why a power series approach might be better suited to this problem, even though there is
an exact solution.

(b) Plot the fourth-order Taylor series solution that you found in Problem 1 and the exact solution together
on the same plot, starting at t = 0. Experiment with the final value of t until you can see at what value
the two solutions start to diverge significantly from each other. Estimate this value.

3. Have a computer calculate the Legendre series for f(x) = x−1/3 up to the eleventh order. Plot that
partial sum and the function f(x) on the same plot from x = −2 to x = 2. Describe how the Legendre series
approximates the function near x = 0, in the region 0 < |x| < 1, and in the region |x| > 1.

4. In this problem you’re going to compare the Legendre series and the Maclaurin series for the function f(x) =
cos(2x).

(a) Calculate the second-order Maclaurin series for cos(2x).

(b) Calculate the second-order Legendre series for cos(2x). Expand the Legendre polynomials in your answer
and gather like powers of x so it’s in the form of a quadratic function of x, just like the Maclaurin series.

(c) On one plot, show cos(2x) and the two quadratic approximations you just calculated from x = −0.1
to x = 0.1. Which quadratic better approximates the function in this interval?

(d) On one plot, show cos(2x) and the two quadratic approximations you just calculated from x = −1 to
x = 1. Which quadratic better approximates the function in this interval?

(e) Taylor series and Legendre series are two different ways of approximating a function with a polynomial.
Based on your results, what are Taylor series more useful for and what are Legendre series more useful
for?

5. Calculating the “norm” of a set of functions is a key step in finding the formula for the coefficients of a series
expansion. In this problem you will use Rodrigues’ formula to derive the norm of the Legendre polynomials:∫ 1

−1[Pl(x)]2dx.

(a) Substitute for Pl(x) using Rodrigues’ formula. Pull the constant out of the integral.

(b) Integrate by parts and argue that the term outside the integral must equal zero.

(c) Find the integral you’re left with after l integrations by parts.

(d) That integral involves the (2l)th derivative of (x2 − 1)l. Evaluate that derivative. Hint : if you expand
(x2 − 1)l all but one of the terms will vanish when you take the derivative.

(e) Evaluate the integral and compute the norm of the Legendre polynomials.

(f) The norm of the Legendre polynomials is most simply expressed as
∫ 1

−1[Pl(x)]2dx = 2/(2l + 1). Your
computer may have given you an answer that looks different from this, but you can check it by calculating

some of the terms. Calculate
∫ 1

−1[Pl(x)]2dx for l = 1, 2, and 3 using the answer you got and, if it looks
different, the formula we just gave you. Make sure they match.
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6. The parts of this problem refer to “Bessel functions of the first kind” Jp(x) and “Bessel functions of
the second kind” Yp(x). Refer to your software’s documentation to find the proper syntax for entering these
functions. For all the following questions, use the domain 0 ≤ x ≤ 50.

(a) Graph the function J1(x). Answer in words: how is J1(x) like a sine function? How does it differ from a
sine function?

(b) How many zeros does J1(x) have in this domain?

(c) The first three positive zeros of this function are called α1,1, α1,2, and α1,3. Find their values. Your
answers should be accurate to the second decimal place.

(d) Find the absolute maximum of J1(x).

(e) Graph the functions J1.2(x), J2(x), and J15(x). Answer in words: how are these functions alike? How do
they differ?

(f) Graph the function Y1(x). Answer in words: how is this function like J1(x)? How is it different?

7. Jp(x) and J−p(x) are linearly dependent for integer values of p. The function Yp(x) is therefore constructed
to be the second solution to Bessel’s equation. In this problem you will show for a few specific cases that Jp(x)
and Yp(x) are linearly independent.

(a) Choose two positive numbers, one integer and the other non-integer. Plot Jp(x) and Yp(x) for p = 0 and
for p equal to each of the two numbers you chose, six plots in all. Choose domains for the plots that allow
you to see the behavior for both small and large positive values of x. (You do not need to include negative
values of x in your plot.)

(b) Based on your plots, describe how each of these six functions behaves in the limit x→ 0+.

(c) Based on your answer to Part (b) argue that Jp and Yp cannot be linearly dependent for the three values
of p you considered.

8. In this problem you’ll examine the behavior of J.1, J.5, and J1.5.

(a) Plot all three functions from x = 0 to x = 100. Describe the plots. What is happening to the amplitude?
To the frequency?

(b) For each function, make a list of the first 100 zeroes. Then, for each function, make a list of the differ-
ences between successive zeroes. (For example, if you were doing this for sinx the second list would be
(π, π, π, . . .). Describe what is happening to the distance between zeroes in each case.

(c) Repeat Parts (a)–(b) for Y.1, Y.5, and Y1.5.
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The two problems below are a set; the first should be done without a computer and the second is a computer-based
follow up.

9. In this problem you’ll derive the coefficients for a zero-order Fourier-Bessel series. In other words, you’ll figure
out how to write an arbitrary function f(x) on the interval [0, 1] as a sum of the functions J0(αn,0x), where J0 is
a “zero-order Bessel function” and α0,n is one of the zeroes of J0 (meaning J0(αn,0) = 0). The best part is, you
could do all this even if you’d never heard of a Bessel function. Your starting point is the orthogonality relation∫ 1

0
xJ0(α0,mx)J0(α0,nx)dx = (1/2)J2

1 (α0,m)δmn. (We’re not going to prove that here, but Sturm-Liouville
theory promises us that such a relationship must exist.)

(a) What is the weight function in this orthogonality relationship?

(b) Your goal is to find the coefficients of the series f(x) =
∑∞

n=1 cnJ0(α0,nx). Start by multiplying both
sides of this equation by xJ0(α0,mx).

(c) Integrate both sides of the equation from x = 0 to x = 1. You should be able to use the orthogonality
relation to eliminate all but one of the terms in the infinite sum.

(d) Solve for the coefficient cm. Your answer should include an integral that involves the unknown function
f(x).

10. [This problem depends on Problem 9.] Find the first three coefficients of the zero-order Fourier-Bessel series
for f(x) = x on the interval [0, 1]. Use a computer to evaluate the necessary integrals numerically.
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11. Exploration: A Different Kind of Series Solution

The following differential equation describes the motion of an object falling in the gravitational field of a planet.

d2r

dt2
= −GM

r2
(1)

Here r is the distance of the object from the center of the planet. The given constants in this problem are G
(a universal constant), M (the mass of the planet, not of the falling object), and r0 and v0 (the initial position
and velocity of the object).

(a) Explain why this equation does not lend itself directly to either the power series method, or the method
of Frobenius.

Nonetheless, we can approach this problem by looking for the first few coefficients in a Maclaurin series solution:

r(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + . . . (2)

(b) Using Equation 2 find the first two coefficients in terms of the given constants.

(c) Take the second derivative of both sides of Equation 2. Then use Equation 1 to replace d2r/dt2, and
finally plug 0 into both sides to find c2 in terms of the given constants.

(d) Write the solution to Equation 1 up to the second order. This solution should look like the introductory
mechanics equation x = x0 + v0t− (1/2)gt2 with the constant g being a function of our given constants.
(This g should come out as 9.8 m/s2 if you use the mass and radius of the Earth as M and r0.)

(e) To find the next term—the first correction to the introductory mechanics equation—take the derivative
of both sides of Equation 1 with respect to time, and then plug in t = 0. Solve for c3 in terms of the given
constants.

(f) Write the solution to Equation 1 up to the third order.

(g) We have seen that your second order formula replicates the introductory mechanics equation r = r0 +
v0t−(1/2)gt2, which works well for objects that stay near the surface of the Earth (r ≈ R). Does the third
order correction make the effective acceleration due to gravity higher, or lower, than 9.8 m/s2? Answer
based on your equation, but then explain why your answer makes sense physically. Assume r0 = R and
v0 > 0 (such as a rocket taking off). (Your answer will depend on time.)

(h) A bullet is fired straight up into the air from the surface of the Earth with an initial speed of 1000
m/s. Look up values for G, M , and r0, and use them to graph the height of the bullet using your answers
to Parts (d) and (f). How does adding the third-order term change the motion of the bullet?
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