Discovery Exercise for Lagrange Multipliers

There are two functions in this exercise, and it's important not to confuse them.

- The "objective" function, f(x,y), is the one we really care about. This function is not shown in the drawing below.
- The other function will be called here g(x,y). When we set this function equal to a constant we get the curve g(x,y)=k shown below. That curve is our "constraint."

We are interested here in values of the function f(x,y), but only along the curve defined by g(x,y) = k. Specifically we are interested in finding the maximum value that f(x,y) attains along that curve. Note that this may not correspond to a local maximum of the function f(x,y).

The drawing shows the curve g(x,y) = k and three points P_{left} , P, and P_{right} on that curve. The vector \vec{v} points parallel to the curve at position P, generally in the direction of P_{right} .

- 1. For this part only, suppose that $D_{\vec{v}}f$ at point P is positive.
 - (a) As you move from P toward P_{right} does the value of f(x,y) increase, decrease, or stay the same?
 - (b) As you move from P toward P_{left} does the value of f(x,y) increase, decrease, or stay the same?
- 2. Now, for this part only, suppose that $D_{\vec{v}}f$ at point P is negative. Explain how we know that point P cannot possibly represent the maximum value of f along the curve.

Chapter: Partial Derivatives

For the remaining questions in this exercise, suppose that point P does in fact represent the maximum value of f along the curve.

- 3. What does that assumption imply about $D_{\vec{v}}f$ at point P? Explain briefly how you know.
- 4. What does your answer to Part 3 imply about the gradient $\vec{\nabla} f$ at point P? Explain briefly how you know. Hint: it doesn't imply $\vec{\nabla} f = 0$.
- 5. Which way does $\vec{\nabla} g$ point at point P? Explain briefly how you know.
- 6. Use your answers to Parts 4–5 to write an equation relating $\vec{\nabla} f$ and $\vec{\nabla} g$ at the point P where f takes on its maximum along the curve g = k.