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CHAPTER 1

Introduction to Ordinary
Differential Equations (Online)

1.7 Coupled Equations
When two ormore dependent variables depend on each other, their equations are “coupled.”
The rules we have presented so far can be generalized to such situations.

1.7.1 Discovery Exercise: Coupled Equations

Consider a population of foxes and rabbits. They each reproduce, but their populations are
both limited by the fact that foxes eat rabbits. For this exercise we’ll adopt a simplifiedmodel
of this relationship.

1. Write a differential equation for the rabbit populationR(t) that expresses the sentence:
“Each year every rabbit produces 5 babies on average, but 10 rabbits are killed by each
fox.” Use F (t) for the number of foxes.
See Check Yourself #7 in Appendix L

2. Explain why you cannot solve this equation for R(t) with the information given. What
more information would you need? (Hint: The answer is not the initial number R(0).
Not knowing that just means there would be an arbitrary constant in your answer.)

3. In Question 1 we gave you a verbal description of the rabbit population and asked
you for the differential equation. Here we will do the opposite for the foxes. The fox
population is described by the differential equation dF ∕dt = R∕2 − F . Give the verbal
description that explains where this equation comes from.

4. If dR∕dt = dF ∕dt = 0 then both populations remain constant. What would have to be
true about the values of R and F for this condition to hold? (They would not both
have to be zero, although that is one way to get this result.)

5. Which of the following pairs of functions solve the equations for R and F ? (More than
one answer may be correct. Indicate all of the correct solutions.)
(a) R(t) = 2000, F (t) = 1000.
(b) R(t) = 2 cos t, F (t) = 2 cos t
(c) R(t) = 1000e4t + 200, F (t) = 100e4t + 100
(d) R(t) = e4t , F (t) = 2e4t

1.7.2 Explanation: Coupled Equations

A differential equation in the form dy∕dt = “some function of y and t” says that the change
in y depends on the current values of y (the dependent variable) and t (the independent
variable). In many physical situations, however, multiple dependent variables depend on
each other. Two reactants decrease in response to each other’s concentrations. A planet and a
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moon change positions in response to each other’s positions. In cases like these you need a
differential equation for each quantity that depends on itself and on the other variables.

To see what it means to solve coupled differential equations, recall simultaneous algebraic
equations.

4x2 − 3y = −5
2x + y2 = 53

You cannot say that x = 2 is a solution, or that it is not a solution, because either statement
depends on what y is. You can say that x = 2, y = 7 is a solution because you can plug that in
and it works. Similarly, if you have a pair of differential equations for two functions x(t) and
y(t) a solution is a pair of functions that, taken together, make both equations work.

As an example, consider the famous love of Romeo and Juliet.3 Romeo’s love for Juliet,
R(t), grows when it is returned. The more Juliet loves Romeo, J (t), the more his love for her
grows. When she hates him, this makes his love diminish. Juliet, on the other hand, is coy.
The more Romeo loves her the more bored she becomes with him, but when he despises
her this inflames her love. Using positive numbers for love and negative for hatred, we can
express all this in a pair of coupled differential equations.4

dR
dt

= J (1.7.1)

dJ
dt

= −R (1.7.2)

Try to think of a solution before reading further. We’re looking for two functions with
the property that the derivative of the first one equals the second one, and the derivative
of the second one equals negative the first. One obvious answer is R(t) = J (t) = 0, which
might correspond to “they haven’t met,” but see if you can find something more interesting
than that.
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FIGURE 1.3 Romeo and Juliet’s feelings for each
other oscillate out of phase.

You may have landed on R(t) = sin t, J (t) =
cos t. In this particular solution Romeo starts out
indifferent to Juliet while Juliet starts out in love
(J > 0). Juliet’s love causes Romeo’s love to grow,
which in turn causes Juliet’s to fade. They remain
fond of each other until t = 𝜋∕2, when Juliet
begins to dislike Romeo. This causes his love to
fade as well until starting at time t = 𝜋 they both
dislike each other, which causes Juliet’s disdain
for Romeo to diminish, etc.

This solution only matches one initial condi-
tion, however, so it can’t be the general solution.
Experimenting with a few constants, we find that

R(t) = 3 sin t, J (t) = 3 cos t works but R(t) = 2 sin t, J (t) = 3 cos t does not. You can multiply R
and J by an arbitrary constant, but you must multiply them by the same constant. So now we
have R(t) = A sin t, J (t) = A cos t. We give below the mathematical criterion for identifying

3This example is adapted with permission fromNonlinear Dynamics and Chaos by Steven Strogatz. It is not particularly
adapted from Shakespeare, although we like to think he would be amused.
4We’re writing this with incorrect units for simplicity. In Problem 1.158 you’ll put in constants of proportionality to
fix the units and re-solve the problem.
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the general solution to a set of coupled differential equations, but even without the official
rules you can see that we’re not there yet. You could start with any combination of Romeo’s
love and Juliet’s love, so you need two arbitrary constants to be able to match any possible
pair of initial conditions.

We thus need to find another independent solution. Once again, this can be done by
squinting at the equations for a while: R(t) = cos t, J (t) = − sin t. As before, you can multiply
this solution by an arbitrary constant and it still works, so adding our two solutions gives us
the general solution.

R(t) = A sin t + B cos t, J (t) = A cos t − B sin t

This pattern occurs frequently in coupled equations: the same arbitrary constants appear in
both solutions, but they appear in front of different functions.

The box below generalizes the definitions and rules for single differential equations to
coupled differential equations. We present them all together without much explanation
because they are similar to what we have seen before.

Linear Superposition and General Solutions for Coupled Equations

Linearity A set of coupled differential equations is said to be linear if every term in all of the
equations is linear in one of the dependent variables. Equations 1.7.1–1.7.2 for Romeo and
Juliet are linear because each term is linear in either R or J . Note that this means no term
can include more than one dependent variable. If the equations for R and J included a term
with R2, RJ , or R(dJ ∕dt) they would be non-linear.

Order of a set of equations A set of coupled differential equations is nth order in a given variable
if the nth derivative is the highest derivative of that variable that appears anywhere in the set
of equations. For example, Equations 1.7.1–1.7.2 are first order in both R and J .

General solution If the differential equations in a set are all linear, then the general solution to
that set will have as many independent arbitrary constants as the sum of the orders of all the
dependent variables.

Homogeneity A set of linear coupled differential equations is homogeneous if every term includes
one of the dependent variables or one of their derivatives.

Linear superposition If a set of coupled differential equations is linear and homogeneous then any
linear combination of solutions to the set of equations is also a solution. If a set of coupled
differential equations is linear and inhomogeneous then you can define the complementary
set of equations by replacing all inhomogeneous terms with zero. In this case the sum of any
particular solution to the inhomogeneous equations with any linear combination of solutions
to the complementary set of equations is a solution to the inhomogeneous equations. (That’s
a mouthful, but it’s the same thing we said earlier about single differential equations.)

The rule about having as many arbitrary constants as the sum of the orders makes sense
if you think about it. If your equations are second order in y(x) you need to specify y(0) and
y′(0) as initial conditions, and if they are first order in z(x) you also need to specify z(0), so a
set of equations that’s first order in one variable and second order in another needs three
arbitrary constants.
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EXAMPLE A Molecule with Two States

Problem:

Suppose a certain type of molecule can exist in two possible states. Let a(t) represent
the number of molecules in state A and b(t) the number of molecules in state B. Let p
be the rate at which state A converts to state B, meaning each second pa molecules
change from A to B. Molecules in state B convert to state A at twice that rate, so every
second 2pb molecules switch from B to A. Putting all that together:

da
dt

= −pa + 2pb, db
dt

= pa − 2pb

Which of the following are valid solutions to this pair of equations?

1. a(t) = 2e−2pt , b(t) = −e−2pt
2. a(t) = 2 + e−3pt , b(t) = 1 − e−3pt
3. a(t) = 6 − 2e−3pt , b(t) = 3 + 2e−3pt

What is the general solution?

Solution:

To check a solution you plug both functions in simultaneously.

1. First take derivatives of the two functions: a′(t) = −4pe−2pt , b′(t) = 2pe−2pt . Plug-
ging these in to the first differential equations gives −4pe−2pt = −2pe−2pt − 2pe−2pt ,
which works. Plugging these into the second differential equation gives 2pe−2pt =
2pe−2pt + 2pe−2pt . This equation is not satisfied, so this is not a solution.

2. The derivatives are a′(t) = −3pe−3pt , b′(t) = 3pe−3pt . Plugging these in gives
−3pe−3pt = −2p − pe−3pt + 2p − 2pe−3pt and 3pe−3pt = 2p + pe−3pt − 2p + 2pe−3pt .
Both equations are satisfied, so this is a solution.

3. We will leave the calculations to you, but you can similarly show that plugging in
these solutions works, so this is also a solution.

Because these linear equations are first order in both a and b, the general solution
must have two arbitrary constants. We can get it, as usual, by writing a linear
combination of the two independent solutions we just found.

a(t) = C
(
2 + e−3pt

)
+ D

(
6 − 2e−3pt

)
b(t) = C

(
1 − e−3pt

)
+ D

(
3 + 2e−3pt

)

(This solution can be simplified by combining terms and renaming arbitrary
constants; we’ll leave that to you to think about.)

Solving Coupled Equations

You may be assuming by this point that we are building up to solving all sorts of coupled
differential equations. As with uncoupled equations, there is no one method that applies to
all of them, and computers can do that step quite well as a rule. Our main focus is on writing
a set of equations for a given scenario, and on interpreting the equations and their solutions.
Nonetheless, we will say a few words here about solving coupled differential equations.

The Romeo and Juliet example above demonstrated one important technique for solv-
ing coupled equations, which is just thinking about them. “The derivative of R is J , and the
derivative of J is −R …what would do that?… ah yes, a sine and cosine.” The more you prac-
tice this skill the better you will be at it, and the better you will understand such equations.
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(Try your hand at these: what if f ′(x) = g (x) and g ′(x) = f (x) with no negative signs? Or what
if f ′(x) = −g (x) and g ′(x) = −f (x) with negative signs on both? See Problem 1.140.)

In Chapter 6 we will use matrices to represent and solve coupled equations. In Chapter 10
we will discuss Laplace transforms, a powerful technique for solving both single and coupled
equations. Chapter 10 will also introduce “phase portraits” which do for coupled equations
roughly what slope fields do for single equations: they give you a way of graphing and visual-
izing the entire space of solutions even if you cannot solve the problem. Here we will present
one simple but fairly general method for approaching coupled equations, which is to “decou-
ple” them.

To illustrate the method, let’s return again to Romeo and Juliet, but imagine you failed to
just think of the solutions. To decouple the equations take either one of them and take the
derivative of both sides. Here we start with Equation 1.7.1.

R ′ = J → R ′′ = J ′

That equation gives us an expression for J ′. When we substitute that in for J ′ in
Equation 1.7.2, we get a single decoupled equation for R .

J ′ = −R → R ′′ = −R

This is the simple harmonic oscillator equation, with solution R = A sin t + B cos t. Finally,
plugging this into R ′ = J gives J = A cos t − B sin t, the same solution we found before. In
general, the way to decouple two differential equations is to differentiate one of them and
then use the other to eliminate one of the two variables.

1.7.3 Problems: Coupled Equations

For Problems 1.135–1.139 check whether the given
functions solve the set of coupled differential
equations.

1.135 x′(t) = y, y′(t) = x; x(t) = Aet , y(t) = Aet

1.136 x′(t) = −x + y, y′(t) = x − y; x(t) = A(1 + e−2t ) +
B(1 − e−2t ), y(t) = A(1 − e−2t ) + B(1 + e−2t )

1.137 x′(t) = 2y, y′(t) = x + y; x(t) = Ae2t +
2Be−t , y(t) = Ae2t − Be−t

1.138 x′(t) = 2xy, y′(t) = x2 + y2; x(t) = 1∕(t2 − 1),
y(t) = −t∕(t2 − 1)

1.139 x′′(t) = y, y′′(t) = −x; x(t) = Aet , y(t) = Aet

1.140 Find the general solutions (two indepen-
dent arbitrary constants) to the following
sets of coupled equations. You should
be able to do these mostly by inspection,
but you can decouple them if you get
stuck.
(a) f ′(x) = g (x), g ′(x) = f (x)
(b) f ′(x) = −g (x), g ′(x) = −f (x)
(c) f ′(x) = g (x), g ′(x) = 4f (x)

1.141 The superstates of Oceania and Eastasia have
a complicated ever-changing relationship. For

each scenario below write a set of coupled dif-
ferential equations that might represent their
populations O(t) and E(t). Then describe—
using equations or words—how you would
expect their populations to evolve over time.
(a) Oceania and Eastasia are mutually sup-

portive allies. The greater their com-
bined (total) population, the more their
individual populations grow.

(b) Oceania and Eastasia are at war.
The greater the population of Ocea-
nia, the more Eastasians are killed
each year, and vice versa.

(c) Oceania and Eastasia are at war, but a
different kind of war. If Oceania has
more people than Eastasia, then the
population of Oceania will grow while
the population of Eastasia shrinks. The
reverse if Eastasia outnumbers Ocea-
nia. The greater the difference in pop-
ulation, the greater the changes.

(d) Oceania and Eastasia have a treaty of
peace and mutual support, but Ocea-
nia cheats. The greater the population
of Eastasia, the more Oceania thrives;
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the greater the population of Ocea-
nia, the more Eastasia suffers.

1.142 A vat contains a molecules of substance A
and b molecules of substance B. Each sec-
ond, kab reactions occur, each of which
turns one molecule of A and two molecules
of B into a molecule of C .
(a) Write differential equations for the num-

ber of molecules of a, b, and c.
(b) Describe in words how you would expect

these numbers to evolve over time.
(c) Now assume that in addition to the

chemical reaction described above, 1023

molecules of A are being added to the
vat each second. Write the new differ-
ential equations and discuss how this
will change the results over time.

1.143 Tanks A and B with volumes VA and VB are
both filled with a mixture of water and brine.
Pure brine is being poured into tank A at a
rate of r gallons per minute. Meanwhile the
water/brine mix from tank A is being poured
into tank B at the same rate, and the mix
from tank B is being poured into the nearby
river at the same rate. Since the rates are all
the same the volume of liquid in each tank
stays the same, and you can assume that the
tanks are well mixed, so the fraction of brine
leaving each tank equals the total fraction
of brine in the tank at that moment.
(a) Write a pair of coupled differential

equations for the number of gallons of
brine in each tank, GA and GB .

(b) Physically, what would you expect
to happen to GA and GB in the
long run, and why?

(c) Mathematically, how can you look at
the differential equations you wrote
and confirm that the physical behav-
ior you described is what GA and GB will
do at late times? Hint: Consider what
must be true of GA and GB in order for
G ′
A = G ′

B = 0, and what will happen to GA
and GB when that condition isn’t met.

1.144 Tanks A and B, with volumes VA and VB ,
are both filled with a mixture of water and
brine. Each minute r gallons of liquid flow
from A to B and an equal amount flows
from B to A. Since the rates are the same
the volume of liquid in each tank stays the
same, and you can assume that the tanks
are well mixed, so the fraction of brine leav-
ing each tank equals the total fraction of
brine in the tank at that moment.

(a) Write a pair of coupled differential
equations for the number of gallons of
brine in each tank, GA and GB .

(b) Physically, what would you expect
to happen to GA and GB in the
long run, and why?

(c) Mathematically, how can you look at
the differential equations you wrote
and confirm that the physical behav-
ior you described is what GA and GB will
do at late times? Hint: Consider what
must be true of GA and GB in order for
G ′
A = G ′

B = 0, and what will happen to GA
and GB when that condition isn’t met.

1.145 The figure shows two balls connected to
each other and to the walls by three springs.
Ball 1 has mass m1 and is displaced by
an amount x1 from its equilibrium posi-
tion, and similarly for Ball 2.

m1 m2

k1 k2 k3

x2x1 = 0

(a) The position x1 = x2 = 0 represents the
equilibrium position. Now imagine that
Ball 1 is at this position precisely, but
Ball 2 is slightly to the right of this posi-
tion, as shown above. Which springs now
exert force on Ball 1, and in which direc-
tions? Which springs now exert force on
Ball 2, and in which directions?

(b) Now imagine that Ball 1 is displaced to
the right by a distance x1, and Ball 2
is displaced to the right by x2.

i. The force of Spring 1 on Ball 1
depends only on the position
x1 (the other position is irrele-
vant). Write a formula for this
force.

ii. How much is Spring 2 stretched?
Your answer should be a function of
x1 and x2. For example, if both balls
are displaced the same amount to the
right then Spring 2 isn’t stretched at
all. As a check on your answer, make
sure it gives a positive answer when
Spring 2 is longer than its equilib-
rium length, a negative answer when
it is shorter, and 0 when Spring 2 is
at its equilibrium length (neither
stretched nor compressed.)
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iii. Using your answer to Part (ii),
write a formula for the force
of Spring 2 on Ball 1.

iv. Putting the two forces together and
using F = ma, write a differential
equation for x1(t). Be sure you have
the sign of each force correct.

(c) Repeat Part (b) for x2.

You will solve this particular set of cou-
pled differential equations twice: using
matrices in Chapter 6 , and using Laplace
transforms in Chapter 10.

1.146 [This problem depends on Problem 1.145.]
(a) Write the coupled differential equations

for Problem 1.145 for the case where
k1 = 1, k2 = 4, k3 = 28, m1 = 1, and m2 = 4.

(b) The general solution to this problem
would have four arbitrary constants.
What are the four initial conditions
you would need to find them?

(c) Verify that x1 = 4 cos(2t), x2 = cos(2t)
is one valid solution.

(d) Verify that x1 = sin(3t), x2 = − sin(3t)
is one valid solution.

1.147 Define a coordinate system with the sun at
the origin and the Earth’s position given by
(x, y). (The Earth orbits in a plane, so we can
ignore the third direction.) We will for sim-
plicity assume the sun doesn’t move.
(a) The gravitational acceleration of a planet

being pulled on by the sun has mag-
nitude GM∕r 2, where G is a constant,
M is the sun’s mass, and r is the dis-
tance between the two objects. Write
down the magnitude of the gravitational
acceleration of the Earth in terms of
x and y.

(b) Using the fact that the gravitational accel-
eration points toward the origin (the
sun), find the x- and y-components of
the Earth’s gravitational acceleration.
Hint: You may find it helpful to draw a
picture and label an angle 𝜃, but your final
answer should be in terms of x and y,
not 𝜃.

(c) Use the acceleration components you
just wrote to write two coupled differ-
ential equations for x(t) and y(t).

(d) Verify that x(t) = a cos
(√

GM∕a3 t
)
,

y(t) = a sin
(√

GM∕a3 t
)
is a solution

to the coupled equations you wrote for

any value of a. What kind of motion
does this solution represent?

1.148 Walk-Through: Decoupling Equations. In
this problem you will solve the equations
f ′(t) = f (t) + g (t), g ′(t) = 3f (t) − g (t). We
will refer to these as the f ′ equation and
the g ′ equation respectively.
(a) Differentiate both sides of the f ′ equation

to get f ′′ in terms of f ′ and g ′.
(b) Substitute g ′ from the g ′ equation

into your answer to get f ′′ in
terms of f , f ′, and g .

(c) Solve for g in the original f ′ equation
and plug this into your answer to
get a decoupled, second-order dif-
ferential equation for f .

(d) Find the general solution for
f (t) by inspection.

(e) Plug this solution for f into the f ′

equation and solve (algebraically) for g .
(f) Plug your general solution for f

and g into the original equations
and verify that they work.

For Problems 1.149–1.152, find the general solutions
to the differential equations by decoupling them. You
should be able to solve the decoupled equations by
inspection or guess-and-check. It may help to work
through Problem 1.148 as an model.

1.149 f ′ = 3g , g ′ = 6f

1.150 f ′ = f + g , g ′ = f
1.151 f ′ = af + bg , g ′ = cf + dg
1.152 f ′ = af 2∕g , g ′ = 2af + bg . Hint: You should

end up with a simple linear equation for f ′′.

Newton’s law of heating and cooling states that when
you put two objects in contact the cold one will heat
up at a rate proportional to the temperature
difference between them. The hot object will cool
down at a rate proportional to the same temperature
difference; however, the constants of proportionality
may be very different (the “heat capacity” of each
object).5

In Problems 1.153–1.155 assume that any two
objects in contact with each other obey Newton’s law
of cooling. Unless otherwise specified, assume that
none of the objects gains or loses heat to any other
part of the environment. The ODEs will include
constants of proportionality, to which you should
assign letters, but you should write your equations in

5In practice this is only an approximation, but it generally works well unless the temperature differences are large.
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such a way that those letters have positive values. In
general the constants of proportionality will be
different for the two objects in contact.

1.153 Bars A and B are in contact with each other.
(a) Write a pair of coupled ODEs

for TA and TB .
(b) Looking at your equations, describe

what will happen to TA and TB over
time. If they start with TA > TB what
will happen to the two temperatures
initially? How will it change over
time? What will happen at very late
times?

(c) Based on your answers, draw a qualita-
tive sketch showing TA and TB vs. time
on the same plot. Your plot should show
how the functions behave at early and
late times. You do not need to include
any numbers on your axes.

(d) Solve the differential equations you
wrote by decoupling them. Verify that
the solutions match the behavior you
described qualitatively above.

1.154 Bars A, B, and C are stacked so that A
and B are touching and B and C are
touching, but not A and C .
(a) Write a set of coupled ODEs for

TA, TB , and TC .
(b) What would have to be true of TA, TB , and

TC in order for none of them to change?
You can use physical intuition to help
guide you, but you must explain your
answer in terms of the ODEs you wrote.

(c) If the bars start out with TA > TB =
TC , describe what will happen to the
temperatures initially. What will hap-
pen a short time later? What will hap-
pen a very long time later?

1.155 Bar A is touching bar B, which is in contact
with a room at constant temperature TR .
(Bar A is insulated from the room, so
it can only exchange heat with bar B.
The room is large so it will affect bar B
without being affected by it.)
(a) Write a pair of coupled ODEs

for TA and TB .
(b) What do you expect to happen to TA

and TB in the long term?
(c) Solve the ODEs you wrote by decou-

pling them. Take the limit of your
solution as t → ∞ and verify that they
match your predictions.

1.156 The Discovery Exercise (Section 1.7.1) pre-
sented a simplified model of a predator-prey
relationship. A more commonly used model,
although still too simple for some situations, is
the “Lotka–Volterra equations,” sometimes
called the “predator-prey equations.”

dR∕dt = 𝛼R − 𝛽RF
dF ∕dt = 𝛾RF − 𝛿F

R and F represents the populations of
rabbits and foxes, and the Greek letters
represent positive constants.
(a) What would happen to the rabbit pop-

ulation if there were no foxes? You
may use common sense to check your
answer, but you must explain how you
can figure out your answer from the
Lotka–Volterra equations.

(b) Similarly, explain using these equations
what would happen to the fox popu-
lation if there were no rabbits.

(c) What values would R and F have to
have in order for their populations
to be unchanging? Give two answers
to this, one of which you can think
of just by looking at the equations.
The other one will require some
calculation.

(d) The product RF appears in both
equations, adding to the number of
foxes and subtracting from the rabbits.
Why?

(e) The simplest population growth for the
foxes would be dF ∕dt = 𝛿F : “the more
foxes you have, the more you get.” But
in the Lotka–Volterra equations, 𝛿F
is subtracted from dF ∕dt: “the more
foxes you have, the fewer you get.” Why?
(Hint: You cannot answer this ques-
tion without thinking about the whole
scenario.)

1.157 [This problem depends on Problem 1.156.] Decou-
ple the Lotka–Volterra equations to get a
differential equation for R(t). Why is this tech-
nique not particularly useful for this case?

1.158 Consider the Romeo and Juliet prob-
lem with proper units. Here R and J are
Romeo’s and Juliet’s love for each other
and 𝛼 and 𝛽 are positive constants.

dR∕dt = 𝛼J
dJ ∕dt = −𝛽R
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(a) If R and J are each measured in love-
units, what are the units of 𝛼 and 𝛽?

(b) Solve for R(t) and J (t) by decoupling
the equations. Your final answer should
have two arbitrary constants in it.

(c) Using the units you found for 𝛼 and
𝛽, what units must your arbitrary con-
stants have in order for your answer to
make sense? Make sure that all terms are

added to things with equivalent units and
that all arguments of trig functions are
unitless.

(d) Suppose 𝛼 is very large compared to
𝛽. What does that tell us about Romeo
and Juliet? (Answer based on the origi-
nal differential equations.) What effect
will it have on their behavior? (Answer
based on your solution.)


