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1.9 Additional Problems
1.179 Parts (a)–(e) below give five different scenarios for the mass of a spherical snowball

M (t). Match each one with the appropriate differential equation.

(a) Rolling down a hill, it gains 5 g/s. I. dM∕dt = 2M
(b) Every second, 5 g melt. II. dM∕dt = M − 5
(c) Rolling, the mass doubles every second. III. dM∕dt = −5
(d) Rolling, the mass triples every second. IV. dM∕dt = 5
(e) Every second the snowball picks up its own mass, but 5 g melt. V. dM∕dt = M

1.180 A thermostat is set to keep the house tem-
perature at a constant 68◦. If the temper-
ature rises too high, the air conditioner
brings it down; if the temperature falls too
low, the heater brings it up. Using u for
the room temperature, which of the follow-
ing differential equations best represents
this situation? Assume every k is a positive
constant with the appropriate units.
(a) du∕dt = 68k
(b) du∕dt = 68kt
(c) du∕dt = 68ku
(d) du∕dt = k(u − 68)
(e) du∕dt = k(68 − u)
(f) du∕dt = k(u + 68)
(g) du∕dt = 68k1(u + k2t)∕(u − k2t)

For Problems 1.181–1.186,
(a) Confirm that the given solution solves the Differ-

ential Equation (DE) for any value of the arbi-
trary constant(s).

(b) Find the specific solution that matches the given
condition.

1.181 DE: r ′(𝜃) + 3r (𝜃) = cos 𝜃
Solution: r = (sin 𝜃 + 3 cos 𝜃)∕10 + Ce−3𝜃
Condition: r (0) = 1

1.182 DE: dx∕dt = (tx − x2)∕t2
Solution: x = t∕(ln t + C)
Condition: x(1) = e

1.183 DE:
dy
dx

=
(x + y) ln(x + y) − (x + 2)

x + 2
Solution: y = eC(x+2) − x
Condition: y(0) = 10

1.184 DE:
dy
dx

=
(ln x − 1)(y2 + 1)

xy ln x

Solution: y =
√

Cx2

(ln x)2
− 1

Condition: y(e2) = 3

1.185 DE: V ′′(x) − 4V (x) = 6x − 4x3

Solution: V (x) = x3 + C1e2x + C2e−2x
Conditions: V (0) = 0, V (ln 2) = 1

1.186 DE: s′′(t) − 9s + 8 = sin t
Solution: s(t) = 8∕9 − (sin t)∕10 +C1e3t +C2e−3t
Conditions: s(0) = 0, s′(0) = 0

For Problems 1.187–1.192,
a) Find the general solution to the given differential
equation. You may solve by simple inspection, by
separation of variables, or by guess-and-check with an
unknown constant.
b) Find the specific solution corresponding to the
given condition(s).

1.187 dy∕dt = ky, y(0) = p
1.188 d2y∕dt2 = −16y, y(0) = 0, y′(0) = 2

1.189 du∕dx = u + 3, u(0) = 0

1.190 du∕dx = (2x + 1)u, u(0) = 1

1.191 d2f ∕dx2 − 5df ∕dx + 6f = 0, f (0) = 0, f (1) = 1

1.192 d2f ∕dx2 − 3df ∕dx + 2f = 6e3x ,
f (0) = 0, f ′(0) = 0

1.193 With sufficient food and no predators,
the population of tribbles multiplies by
121 every day. However, the population
is kept in check by a ravenous horde of
vermicious knids, who eat 12,000
tribbles a day.
(a) Write a differential equation for the

number of tribbles as a function
of time.

(b) What is the equilibrium solution to
your equation? Is it a stable or unstable
equilibrium? How can you tell?

(c) Solve your differential equation with
the initial condition P (0) = 125.
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1.194 Solve the differential equation d2y∕dt2 = 3y
with initial conditions y(0) = 0, y′(0) = 4

√
3.

1.195 dy∕dx = ex+y.
(a) Solve.
(b) Find the solution that contains

the point y(0) = −2.
(c) Demonstrate that your solution sat-

isfies both the differential equation
and the initial condition.

1.196 The function y = f (x) is the solution to the
differential equation dy∕dx = (y − 2)2∕(x − 2)
that goes through the point (3, 0).
(a) Find the slope of this curve at

the point (3, 0).
(b) Find a formula for the concavity of this

curve as a function of x and y. (Remem-
ber that concavity is the derivative with
respect to x of dy∕dx. After you use
the quotient rule, your formula for
concavity will have x, y, and dy∕dx in
it. Then you can replace dy∕dx with
(y − 2)2∕(x − 2) to get a function of
x and y.)

(c) Find the concavity of this curve
at the point (3, 0).

(d) Based on your answers to parts (a)
and (c), draw a quick sketch of the
curve around the point (3, 0).

(e) Find the function y = f (x).
1.197 The function V (t) follows the differen-

tial equation dV ∕dt = 2V 2 + V 3 − V 4. Pre-
dict the long-term behavior of V . Your
answer will consist of several different
statements of the form “If V starts in this
range, then it will head toward…”

1.198 Consider the differential equation dy∕dt = y2.
(a) Begin by drawing a slope field at all inte-

ger points in t ∈ [0, 5], y ∈ [−2, 2].
(b) Based on looking at your slope field, what

is lim
t→∞

y(t) if y(0) = 1? If y(0) = −1?
(c) Now solve the differential equation using

separation of variables. Your solution
should have an arbitrary constant C .

(d) Find two specific solutions for the two ini-
tial conditions y(0) = 1 and y(0) = −1.

(e) Find lim
t→∞

y(t) for your two specific
functions.

(f) In one case, you should find that the limit
you predicted based on your slope field
does not match the limit you predicted
based on your solution. Explain why one
(or both) of your predictions was wrong.

1.199 Consider the differential equation
dy∕dx = y − x2.
(a) Have a computer make a slope field

for this equation. You may need to do
some trial and error to find good ranges
for x and y. You should have at least
80 points on your slope field.

(b) Have the computer plot the function y =
2 + 2x + x2 on the same plot as the slope
field you just found. You should be able to
convince yourself that this function is fol-
lowing the slopes indicated on your slope
field, and is thus a solution to the differ-
ential equation. (You can also check this
analytically.)

(c) Predict how the function will behave if
it has an initial condition that places it
above the solution you just plotted. How
will it behave if it has an initial condition
below the one you plotted? Explain your
predictions by referring to the behavior
of the slope field above and below that
solution.

(d) Have the computer numerically solve
this differential equation with initial
conditions y(0) = 1 and y(0) = 3. Make
a final plot showing the slope field, the
particular solution you plotted before,
and these two numerical solutions. Does
their behavior match your predictions?
Explain.

1.200 The drawing below shows dy∕dx as a function
of y. lim

y→0+
(dy∕dx) = ∞ and lim

y→∞
(dy∕dx) = ∞, and

the absolute minimum occurs where y = 3
and dy∕dx = 6. The function is undefined
for y ≤ 0.
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Sketch the function y(x) that goes through
the point x = 0, y = 3.

1.201 A dish contains an amount of bacteria B(t).
On average each bacteria cell produces one
new offspring each day. At the same time an
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enzyme in the dish kills 1000 bacteria cells
per day. Write a differential equation for B(t)
and solve it, assuming the dish starts with 1200
bacteria cells. (In writing your equation you
should assume time is measured in days and
B is measured in number of cells.) How many
bacteria cells does the dish contain after
ten days?

1.202 In 1930, psychologist Louis L. Thurstone pro-
posed9 that learning follows the differential
equation dp∕dt = k[p(1 − p)]3∕2 where p rep-
resents mastery of a task or topic on a scale
of 0 to 1 and k is a positive constant.
(a) What are the equilibrium solutions, and

what do they represent about learning?
(b) At what p-value does a student

learn the fastest?
(c) Sketch the general shape of a learning

curve according to Thurstone’s model.
This equation can be solved analytically.

We encourage you to have a computer
solve it for you, which will give you a good
appreciation for why sometimes an analytic
solution to an ODE is not the best way to
understand it.

1.203 We have worked several times with drag
forces proportional to velocity. In some
cases it is more accurate to model a drag
force as proportional to velocity squared:
F = −kv2 where k is a positive constant.
(a) Explain why this law, as written, only

makes sense for positive v-values.
(b) Using Newton’s Second Law, write a

first-order differential equation for the
velocity of an object experiencing this
drag force and no other forces.

(c) Draw a slope field at all integer points
in t ∈ [0, 5], v ∈ [0, 2].

(d) Based on looking at your slope field, what
is lim
t→∞

v(t) if v(0) = 0? If v(0) = 1?

(e) Solve the differential equation using
the initial condition v(0) = v0.

(f) How long will it take the object to reach
1/10 of its original speed? Your answer
will depend on k, m, and v0.

(g) Find the body’s position function
x(t), assuming x(0) = 0.

(h) Draw a quick sketch of x(t) for t ≥ 0.

1.204 Black Holes and Hawking Radiation

In 1974 Stephen Hawking predicted
that, due to quantum effects, black holes
should lose mass. This process, called
“evaporation,” follows the equation
dM∕dt = −ℏc4∕(15, 360𝜋G2M 2) where
M is the mass of the black hole and all
other quantities are constants.
(a) We can make this equation more tractable

by grouping the constants together.
Let k = ℏc4∕(15, 360𝜋G2) and rewrite
the differential equation in a simpler
form.

(b) Looking at your differential equation,
does it predict that black holes will
grow or shrink? Does it predict that
large black holes will change more
slowly or more quickly, than small
ones? Based on these facts, write
a brief description of the life of a
black hole.

(c) Solve the differential equation with
the initial condition M = M0.

(d) Look up values of ℏ (Planck’s con-
stant divided by 2𝜋), c (the speed of
light), and G (the gravitational con-
stant). Make sure they are all in stan-
dard SI units! Put them together to
find the value of your constant k.

(e) The most commonly observed type of
black hole is a “stellar black hole,” which
has a mass comparable to that of the sun:
2 × 1031 kg. How long would such a black
hole take to evaporate entirely?

(f) The universe is roughly 1.4 × 1010 years
old. Express the lifetime of a stellar
black hole as a multiple of the cur-
rent age of the universe.

(g) It’s possible that particle physics exper-
iments will produce microscopic black
holes with mass comparable to a pro-
ton: about 2 × 10−27 kg. As of this writing,
there has been no evidence of such black
holes being produced, but some peo-
ple worry that if they were they would
destroy the Earth. How long would
such a black hole last? Is this something
we should be worried about?10

9Thurstone, L.L. The Learning Function. Journal of General Psychology, 1930, 3, 469–493.
10Aside from the short lifetime of such black holes, there’s a simpler argument for why they couldn’t destroy Earth. Cos-
mic rays constantly strike the upper atmosphere with energies far greater than we can produce in a lab. If these experi-
ments could produce anything that would destroy Earth it would have happened billions of years ago.
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1.205 Rocket Science

A rocket engine produces thrust by burn-
ing and expelling fuel. Newton’s Second
Law F = ma holds as always, but m is not
a constant. Assume the rocket begins with
a total mass of m0 and burns off mass at a
steady rate of k (measured in mass per unit
time), producing a constant force of F .
(a) Write a function for the rocket’s mass m(t).

(This is a high school algebra problem;
don’t try to make it complicated.)

(b) Write a second-order differential equation
for the rocket’s position x(t).

(c) Because your equation gives d2x∕dt2 as
a function of t only (no x-dependence),
you can integrate twice to find the general
solution. Your final answer should have
two independent arbitrary constants.

(d) Assuming the rocket begins its jour-
ney at rest at x = 0, solve for your arbi-
trary constants and find the function
x(t). Your answer will, of course, con-
tain the constants F , m0, and k.

(e) If the rocket begins with a mass of 5000 kg
and burns mass at a rate of 60 kg/s,
exerting a constant force of 5,000,000 N,
how fast is it going after 50 s? How
far has it traveled?

1.206 The Barometric Formula

A region is filled with fluid (gas or liquid).
This fluid is everywhere subjected to the
downward force of gravity, balanced by the
“pressure gradient” (lower altitudes are at
higher pressure). This equilibrium is repre-
sented by the equation dP∕dz = −𝜌g , where
P is the pressure, z is height, 𝜌 is density, and
g = 9.8 m/s2 is the acceleration due to gravity.
(Deriving this equation is a physical problem
unrelated to what we want to convey in this
chapter, so we’re just giving it to you.)
(a) For a liquid, density generally stays

pretty constant. Treating 𝜌 as a constant,
find P (z). Your answer should of course
include an arbitrary constant.

(b) For a gas, the ideal gas law gives the
density as 𝜌 = mP∕(RT ), where m is
the molar mass and R is the ideal gas
constant. Assuming constant temper-
ature, find P (z). This result is known
as the “barometric formula.”

1.207 [This problem depends on Problem 1.206.] In
Problem 1.206(b) you derived the baro-
metric formula for pressure variation with
depth by assuming a constant temperature.

For the lower portion of the Earth’s atmo-
sphere, known as the troposphere, a more
realistic model is a linear variation of tem-
perature with altitude: T = T0 − kz. Cal-
culate P (z) under this assumption.

1.208 Newton’s Law of Heating and Cooling

A small object (such as a hot cup of coffee or
a cold soda) at temperature Q is placed inside
a room with ambient temperature Qr . Accord-
ing to “Newton’s Law of Heating and Cooling,”
the rate of change of the object’s temperature
is proportional to the difference in tempera-
ture between the object and the room.
(a) Newton’s Law can be expressed as

dQ∕dt = k(Q − Qr ) or as dQ∕dt = k(Qr −
Q ). Both are mathematically valid, but
we want to choose the one that will
lead to a positive k-value. (That way
we know that ekt is blowing up and e−kt

is approaching zero.) Which of these
equations will give us a positive k-value?
Will it work for both the hot coffee and
the cold soda? How can you tell?

(b) Solve Newton’s Law by separating
variables. Note that your function
Q (t) will have three constants in it:
Qr (the temperature of the room),
k (the constant of proportionality),
and C (an arbitrary constant).

(c) What is lim
t→∞

Q (t)?
(d) A 90◦C cup of coffee placed in a 70◦C

room reaches 80◦C in 10 min. How
long will it take to reach 71◦C?

1.209 Radioactive Decay

A radioactive sample consists of a large col-
lection of unstable atoms. In any given day
(or year or century), every one of those
atoms has a certain chance of decaying, inde-
pendent of all the other atoms. Therefore,
the more atoms you have, the more atoms
decay: dM∕dt = −kM where k is a positive
constant.
(a) Draw a slope field for this differential

equation on all integer points in 0 ≤ t ≤ 4,
0 ≤ M ≤ 4 using k = 1∕2. Then draw two
sample curves through your slope field.

(b) Based on your slope field, what
is lim

t→∞
M (t)?

(c) Solve the differential equation with
the initial condition M (0) = M0. (Do
not set k = 1∕2 as you did in Part (a);
leave it as an unknown constant that
varies from one substance to another.)
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Does the resulting function match the
curves you drew in Part (a)?

(d) The “half-life” t1∕2 of a radioactive sub-
stance is the amount of time elapsed
before M = M0∕2. Write a formula for
the half-life as a function of k.

(e) If you measure that 10% of a radioac-
tive sample has decayed in one day, how
long will it be until 90% decays?

1.210 [This problem depends on Problem 1.209.]
(a) Uranium-235 is used in atomic bombs.

How long does it take a sample of 235U to
decay to a tenth of its original mass?

(b) Carbon-14 is used in dating ancient
organic samples. How long does it
take a sample of 14C to decay to a
tenth of its original mass?

1.211 Rate of a Chemical Reaction.

When iron and sulfur are heated together,
they can combine to create iron sulfide.
Each time an Fe molecule collides with an
S molecule, there is a chance that they will
form an FeS molecule: Fe+S→FeS.
Let f equal the number of g-moles of

iron, s equal the number of g-moles of sul-
fur, and p equal the number of g-moles of
iron sulfide produced. The system begins
with f = f0, s = s0, and p = 0.
(a) Explain why, at any given time, f = f0 − p.
(b) Suppose at a given moment df ∕dt = −5.

What is ds∕dt? What is dp∕dt?
(c) Because the reaction depends upon

random collisions between Fe and S
molecules, the rate of reaction dp∕dt is
proportional to the product fs. Write a
differential equation for p(t). Note
that your differential equation will
include the variable p and the con-
stants f0 and s0, but cannot include
the variable quantities f and s.

(d) Solve your differential equation
assuming that f0 = s0.

(e) Solve your differential equation assuming
that f0 ≠ s0. (You can solve this on a computer
or do it by hand using partial fractions.)

(f) Find lim
t→∞

p(t). The answer will depend on
whether s0 > f0, s0 = f0, or s0 < f0.

1.212 Spread of a Disease

The logistic equation is used to predict, among
other things, the spread of disease through
a fixed population. For instance, a dis-
ease might follow the equation dP∕dt =
2P (1 − P ) where P is the fraction of the
population that is infected.
(a) For very low values of P , 1 − P is

approximately 1, so the differential
equation is approximately dP∕dt =
2P . What kind of growth is predicted
by this equation? What does it sug-
gest about the mechanism of disease
spread?

(b) For very high values of P , 1 − P
approaches zero, so the growth
slows down. Why does this make
sense in terms of how the disease
spreads?

(c) Draw a slope field for this equation for
P = 0, 1∕8, 1∕4, 3∕8, 1∕2, 5∕8, 3∕4, 7∕8, 1.
Ignore negative t-values.

(d) Based on looking at your slope field,
list the equilibrium solutions and clas-
sify them as stable or unstable.

(e) Trace a sample curve through your
slope field, starting at P (0) = 1∕8.
Your curve should extend far enough
to determine lim

t→∞
P (t).

1.213 [This problem depends on Problem 1.212.]
(a) Solve the differential equation in

Problem 1.212. (You can solve this on
a computer or do it by hand using partial
fractions.)

(b) Find the specific solution that corresponds
to the initial condition P (0) = 1∕8.

(c) Find lim
t→∞

P (t). Make sure it matches your
prediction in Problem 1.212.

(d) Graph your solution on a computer.
Make sure the graph matches the graph
you drew based on your slope field.


