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10.13 Additional Problems

Throughout these problems, H (x) refers to the Heaviside function and 𝜹(x) to the Dirac delta function.

In Problems 10.294–10.315 solve the given
differential equation.

∙ If no initial conditions are given, find the
general solution. If initial conditions are
given, find the specific solution correspond-
ing to those initial conditions.

∙ Express your answer as a function f (t) if it’s easy
to do so, but some answers are best expressed
as an equation relating f and t.

∙ If your answer is a Laplace transform
F (s), leave it in that form.

∙ No computers should be required.

Hint: Some of the first-order equations are written
with df ∕dt and some with dt and df separate. In some
cases you may find it helpful to rewrite the equation
the other way.

10.294 d2f ∕dt2 + 5df ∕dt + 6f = 12

10.295 df ∕dt + 4t3f = t3, f (0) = 9∕4
10.296 df ∕dt = sec(f + t2) − 2t

10.297 d2f ∕dt2 + 25f = e5t , f (0) = f ′(0) = 1

10.298 d3f ∕dt3 + 4d2f ∕dt2 = 8, f (0) = 1,
f ′(0) = 0, f ′′(0) = −1

10.299 (f 3 + t2)dt + (3f 2t + 2f )df = 0

10.300 df ∕dt + t2f = t2f 4

10.301 (sin t + f tan t)dt − df = 0

10.302 (ef −t + 1)dt − df = 0, f (0) = 0

10.303 f
(
df
dt

)
= t
ef 2+t + 2(f 2 + t)

− 1
2

10.304 df ∕dt = (f 2 + t)∕(f − 2tf ), f (0) = 1

10.305 (f ∕t − t2e−t )dt + (1∕t + (f 2∕t)e−t )df = 0

10.306 d2f ∕dt2 − df ∕dt + e2t f = 0

10.307 d2f ∕dt2 + 4df ∕dt + 3f = 𝛿(t − 1),
f (0) = 0, f ′(0) = 2

10.308 df ∕dt = tef 2∕t2∕f + f ∕t
10.309 td2f ∕dt2 + df ∕dt − (4∕t)f = 8∕t
10.310 (t2f 2 + f )dt + t df = 0, f (1) = 1. Notice that

the initial condition occurs at t = 1.

10.311 (f 2 + 2tf )dt − (tf + t2)df = 0

10.312 df ∕dt + f ∕t = 2t3 + 7

10.313 d2f ∕dt2 + f = cos2 t

10.314 d2f ∕dt2 + 2df ∕dt + f = sin t

10.315 df ∕dt + 3f + 2 ∫ t
0 f dt = e−t , f (0) = 1

In Problems 10.316–10.322, solve the given
differential equation by substitution. Start by figuring
out if the equation fits into one of the three special
cases: Bernoulli, homogeneous, or y(x) only appears
inside derivatives. If it does, you immediately know
the right substitution to use. If it doesn’t, then you’ll
have to look at the equation and try to find the right
substitution. (If you try something that doesn’t work,
try something else!)

10.316 dy∕dx = (y∕x)2 + (y∕x)
10.317 ey

[
(d2y∕dx2) + (dy∕dx)2

]
+ (1 − ey) = 0

10.318 dy∕dx = (y∕x)2 − (y∕x). (Your substitution will
lead you to a separable equation that can
be integrated using partial fractions.)

10.319 y′′(x) = (y′(x)∕x)2 − (y′(x)∕x). (Your substitu-
tion will lead you to a separable equation that
can be integrated using partial fractions.)

10.320 (d2y∕dx2) − (dy∕dx) − e2xy = 0

10.321 xy(dy∕dx) = x2 + y2

10.322 y(dy∕dx) = x2 + y2

10.323 (In this problem you will solve the differen-
tial equations you set up in the motivating
exercise, Section 10.1 , but you do not
need to have done that exercise to do this
problem.) An object with mass m = 1 kg
is attached to an ideal spring with spring
constant k = 9 N/m, subject to a drag
force Fdrag = −bv with b = 6 N⋅s/m, and
also subject to an external driving force
Fe (t). In each case below the solution you
write should be the general solution to
the ODE.
(a) Write the differential equation for

x(t) assuming no driving force, Fe = 0.
Solve the equation using guess
and check.

(b) Write the differential equation for x(t)
assuming a driving force Fe that is a con-
stant 3 N from t = 0 to t = 10 s. Solve
it using Laplace transforms. Your final
answer will be in the form of a Laplace
transform X (s), and will depend on the
unspecified initial conditions x0 and v0.
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(c) Write and solve the differential equation
for x(t) assuming an unspecified driv-
ing force Fe (t). Your final answer will
have the function Fe (t) in it.

(d) Solve the differential equation for
x(t) assuming Fe = t5e−3t .

10.324 In this problem you’ll solve the equation
t2ẍ + tẋ + x = 0 twice.
(a) Find the general solution by using

guess and check.
(b) Go back to the differential equation and

find the general solution again, this time
by using the substitution u = ln t.

(c) You probably found two very different
looking answers. In fact your guess-and-
check answer should have been complex.
Using properties of logs and exponents
write that solution as a real function
and show that it matches the solution
you got from variable substitution.

10.325 The equation x′′(t) + 5x′(t) + 4x = 2 sin(2t)
with initial conditions x(0) = x′(0) = 0
represents a damped, driven oscillator.
(a) Find the solution by using guess

and check.
(b) Find the solution again by using

variation of parameters. Hint: you may
find the integrals on Page 485 useful.

(c) Find the general solution a third
time by using a Laplace transform.
Use a computer only to find the
inverse transform at the end (and, if
you want, to take an integral in the
middle).

10.326 For each function below, draw the function
and find its Laplace transform (by hand).
(a) H (t − 1) −H (t − 2)
(b) H (t − 4) −H (t − 5)
(c) H (t − 1) −H (t − 2) +H (t − 4) −H (t − 5)
(d) H (t − 1) + [H (t − 2) −H (t − 3)]e−t

10.327 Let f (t) = (1∕a)[H (t − 2) −H (t − 2 − a)]
where a is a constant.
(a) Draw a quick sketch of f (t), assum-

ing a is a reasonably small positive
number.

(b) Find [f (t)]. Your answer will of course
be in the form F (s) but it will still
have the constant a in it.

(c) Find lim
a→0

F (s).

(d) What is lim
a→0

f (t)? Does your Laplace trans-
form make sense for this function?

10.328 Let f (t) =
∑∞

n=0H (t − n).
(a) Sketch f (t).
(b) Find the Laplace transform F (s). Your

answer should be in closed form,
i.e. with no summation.

10.329 The moon is about 384,000 km from
Earth. A body in between the Earth and
the moon experiences gravitational pulls
in opposite directions from the two bod-
ies. If we place the origin at the center
of the Earth then the object’s position
obeys the differential equation

d2x
dt2

= −2.98
x2

+ .0366
(3.84 − x)2

measuring distance in 100,000s of kilometers
and time in days. (You can do the problem
in SI units, but the numbers are messier.)

3.84 –xx

(a) Explain why this equation is only valid
for objects in between the Earth and the
moon. In other words, how can you tell
that it must give incorrect values if the
object is at x < 0 (behind the Earth) or
at x > 3.84 (beyond the moon)?

(b) Find the value of x at which the
Earth’s and moon’s pulls exactly bal-
ance. Explain physically why you
would expect this equilibrium value
to be stable or unstable.

(c) Draw a phase portrait for this equation
and confirm that there is an equilibrium
point where you predicted and that it
has the character you predicted.

10.330 A Brief Voltage. The charge buildup
q on the capacitor in an RLC circuit
obeys the following equation.

L
d2q
dt2

+ R
dq
dt

+ 1
C
q = V (t)

Consider a circuit with L = 1 H,
R = 8 Ω, C = 1∕15 F, and V (t) = 9[
H (t − 1∕3) −H (t − 2∕3)

]
sin(3𝜋t) Volts.16

The nature of this problem suggests

16These aren’t particularly realistic inductance and capacitance values but it’s harder to focus on the process when
you’re juggling numbers like 6 × 10−9 F.
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Laplace transforms, but in this prob-
lem you will solve for q(t) a different way.
Assume q(0) = 1 C and q̇(0) = 0.
(a) Sketch the function V (t) for t ≥ 0.
(b) For all t < 1∕3 the voltage is 0. Use

the method of guess and check to find
the solution during this time period,
subject to the initial conditions.

(c) Use your answer from Part (b) to find
q and q̇ at the moment when the volt-
age source turns on. If you punch your
answer into a calculator, hold onto at
least three digits of the answer.

(d) For the next 1∕3 seconds the voltage
is sin(3𝜋t). Use the method of guess
and check to find the solution dur-
ing this time period. The initial con-
ditions q(1∕3) and q̇(1∕3) will come
from your answer to Part (c).

(e) Use your answer to Part (d) to find
q and q̇ at the moment when the
voltage source turns off.

(f) Find the solution after the volt-
age source turns off.

10.331 Orthogonal Trajectories. It is sometimes use-
ful to find families of curves perpendicular
to each other. For example, in two dimen-
sions a set of charges creates field lines and
equipotential curves that are orthogonal
(perpendicular). If you know the formula
for one set of curves, it’s generally possible to
find a differential equation that you (hope-
fully) can solve to find the orthogonal curves.
As a first, simple example, consider the field
created by a single point charge in 2D. You
can measure that the equipotential curves are
concentric circles: x2 + y2 = r 2. Each value of
r corresponds to a different equipotential
curve.
(a) What curves would you think would be

perpendicular to those circles? Answer
visually before going through the math.

(b) Use implicit differentiation to find the
slope meq = dy∕dx of the equipotentials
(circles) as a function of x and y.

(c) Since the field lines are orthogonal
to the equipotentials, mfl = −1∕meq .
Write that statement as a differential

equation: dy∕dx as a function of x
and y for the field lines.

(d) Solve that differential equation to find
y(x) for the field lines. Your answer
should have one arbitrary constant,
so it represents a family of curves.
Describe that family of curves. Does
it match what you predicted?

(e) Now suppose a less symmetric con-
figuration of charges led to elliptical
equipotentials: (x∕2)2 + y2 = r 2. Use the
procedure outlined above to find y(x)
for the field lines. (Despite the name,
“field lines” are not in general linear.)

10.332 [This problem depends on Problem 10.331.]
Plot a representative sample of the elliptical
equipotentials and their corresponding field
lines from Part (e) of Problem 10.331.

10.333 [This problem depends on Problem 10.331.] Prob-
lem 10.331 walked you through the basic
process of finding trajectories orthogonal
to a family of curves, but it sidestepped a dif-
ficulty that can often arise. Consider as an
example the curves y = kx4, where k is the
parameter that varies from one curve to the
next (just as r was in Problem 10.331).
(a) First try finding the orthogonal trajecto-

ries exactly as you did in Problem 10.331.
What you should find is an equation
for y(x) that includes two arbitrary
constants, the original one k plus the
new one that gets introduced by the
integration. That doesn’t make sense,
so we need to make a slight change.

(b) Here’s the problem. On each of our
original curves k is a constant, and we
treated it as such. But each orthogo-
nal trajectory intersects many of the
original curves, passing through many
values of k, so on these new curves k
is not a constant. We therefore have to
eliminate k from this process before writ-
ing mfl . So solve y = kx4 for k and then
take the derivative of both sides.

(c) Now finish the process. Find dy∕dx
for the new trajectories, separate
variables, and integrate to find the
orthogonal trajectories.


