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CHAPTER 10

Methods of Solving Ordinary
Differential Equations (Online)

10.3 Phase Portraits

Justas aslope field (Section 1.4) gives us a way to visualize the solutions to a first-order ODE,
a phase portrait is a way of visualizing the solutions to two (or more) coupled first-order
ODEs, or to a single second-order ODE.

10.3.1 Explanation: Phase Portraits

In Section 1.7 (see felderbooks.com) we introduced “coupled” differential equations. Such
equations occur when two variables depend on each other. For instance, dx/dt may depend
on both x and y, and dy/dt may also depend on x and y. A solution would be a pair of

@ equations x(¢) and y(¢) that solve both equations simultaneously. @
Our first example was the math problem of Romeo
and Juliet.? Romeo’s love grows the more Juliet loves him 1 R
(dR/dt = J), while Juliet’s love diminishes the more Romeo

loves her (df/dt= —R). The state of the system at any 02 N/ L\
moment is the value of the two functions R and J. If you } \W’ 8 \{of
know those two numbers at any moment in time you can 0.5 \/
figure out how they will evolve for all future times. 1.0

In Chapter 1 we solved these equations and found that R
and J oscillate sinusoidally, 90° out of phase, as indicated in
Figure 10.1. In this section we will arrive at the same conclu-
sion by a graphical method. Like slope fields, the method
of “phase portraits” allows us to visualize the possible behav- J
iors of a system, in this case of two coupled ODEs. Although [
we’re introducing them in the context of this simple problem
that we can solve exactly, phase portraits can be used to under- ®
stand the behavior of systems whose equations can’t be solved
analytically. 5 ] >R

The phase portrait for the Romeo and Juliet system is a plot
with R on one axis and ] on another. For instance, Figure 10.2 -1p
shows that Juliet loves an indifferent Romeo. Every point in
this space represents one possible state of the Romeo-and-Juliet ot
system.

Figure 10.2 is not like most graphs you have worked with.
You are accustomed to the variable on the y-axis depending on

FIGURE 10.1 Romeo and Juliet’s
feelings for each other oscillate out
of phase.

FIGURE 10.2 Juliet loves Romeo.

2adapted with permission from Nonlinear Dynamics and Chaos by Steven Strogatz.
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the variable on the x-axis. In this case both the x- and y-axes represent dependent variables.
The independent variable, time, does not appear in the diagram at all. So the state R = 0,
J =1 shown on the plot could be an initial condition (¢ = 0) or it could occur at any other
time. We can’t say.

What we can say, based on the differential equations,
is how this state will evolve. dR/dt = J tells us that R will
o increase; df /dR = —R tells us that J will hold steady. So
if the system is ever momentarily in the state shown in
Figure 10.2, its next shift will be to the right. From there
the positive R will start causing ] to decrease. If you follow
this logical progression you will end up describing a cir-
cle back around to the point (0, 1) where we started, and
so on forever. This circle describes the same progression,
and for the same reasons, that Figure 10.1 described.

But that circle is only the particular solution that starts
at the point (0, 1). If the system starts farther from the ori-
gin it will trace out a similar circle with a larger radius.
We can therefore represent the system by Figure 10.3, a
FIGURE 10.3 A phase portrait showing  “phase portrait.” Just like Figure 10.1, this new represen-
possible solutions to the Romeo and tation shows Romeo and Juliet’s loves oscillating 90° out
Juliet equations. of phase with each other in a perpetual cycle of love and

hate. Each of these representations has an advantage rel-
ative to the other. The advantage of Figure 10.1 is that it includes the time, which Figure 10.3
does not. Looking at the phase portrait we can see that R and J will oscillate, but there’s no
way to know how long each oscillation takes, or even whether it’s going faster at some points
of the cycle than at others. The advantage of the phase portrait is that it shows not just a
single trajectory, but a whole family of possible trajectories corresponding to different initial
conditions. When we look at a phase portrait that includes enough trajectories we can see in
one plot all the possible behaviors of the system.

~

L/

]

S
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Definition: Phase Portrait

A “phase portrait” is a plot showing the possible solutions to a set of coupled first-order differential
equations. Each dependent variable is plotted on one axis. The curves on a phase portrait, usually
called “trajectories,” show possible behaviors of the system.

(We’ll discuss below how to make phase portraits for second-order differential equations by writ-

ing them as sets of coupled first-order equations.)

Each point on a phase portrait represents a possible state of the system. Since the system
could presumably start in any possible state, each point can also be said to represent a possible
initial condition. For example, we can see from Figure 10.3 that if Romeo and Juliet start
with any combination of feelings for each other that has a combined magnitude R? + J2 =9
(in whatever units we might use to measure feelings) then they will oscillate with that same
magnitude forever.

If two trajectories crossed each other, one set of initial conditions could lead to two pos-
sible outcomes. That is technically possible for non-linear equations, but it takes work to
contrive such an example. We will assume that phase portrait trajectories never cross.
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_ A Phase Portrait

Problem:
The figure below is a computer-drawn phase portrait for the equations % = x — y,
y = x®. Based on this drawing, describe the possible long-term behaviors of the system.

Solution:
The overall trend is a counterclockwise rotation. Whenever x is positive, y is
increasing; in the upper left of the plot x is decreasing and in the lower right x is
increasing. Take a glance at the differential equations and convince yourself that this
is just what we would expect.

But we also see something else: no matter what initial conditions the system starts
in, the amplitude of the oscillation increases over time. The system spirals out toward
infinity.

Critical Points and Separatrices
We are going to analyze the behavior of the following system by drawing a phase portrait.

dx dy
==y ==x-1 10.3.1
dt % x ( )

The first thing we always look for are the points where x'(¢) = y/'(t) = 0. If the system ever
reaches such a “critical point” it will stay there forever. Physically these represent equilibrium
states of the system.

Definition: Critical Point

A set of first-order differential equations for the functions x, (%), x,(¢), ... has a critical point at a set
of values (x;, xo, ...) if all of the derivatives &, %,, ... equal zero there.

A critical point is “stable” (or “attractive”) if all the trajectories near that point converge toward
it. A critical point is “unstable” (or “repulsive”) if all the trajectories near that point move away from
it. It is also possible for a critical point to be neither attractive nor repulsive—either because some
nearby trajectories approach it and others move away, or because nearby trajectories orbit around
the critical point as in Figure 10.3.

Critical points are the only places where a trajectory can begin or end. A trajectory can
come in from infinity and end at a critical point, start from a critical point and go off to
infinity, start and end at infinity, start and end at critical points, or make a closed loop.

&
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Itisn’t hard to determine that Equations 10.3.1 have a critical point at (1, 0) and nowhere
else. So we will start building our phase portrait out from there.
Along the x-axis we have ¥’ =0 and y = x— 1. So to the right of our critical point the
trajectories point straight up, and to the left they point straight down.
Along the line x = 1 we have x’ = yand y' = 0. So above our critical point the trajectories
point directly to the right, and below they point left. Let’s draw what we have so far.
Based on just those arrows and a little bit of thought
Y we can say a surprising amount about this system. For
2t instance, suppose the initial conditions are x =2, y=0
(directly on one of our arrows, just to make the first
step easy). The initial movement will be straight up
on the graph: that is, y will increase (y =1) while
1 1 1 1 x holds steady (x' =0). So a short time later finds
5 3% us at the point (2,Ay). Now y is stll 1, but & is
now a small positive number. Our graph starts to veer
slightly to the right. As we move higher the increas-
ing y causes ¥’ to increase, and the increasing x causes
v to increase. So our graph will head toward (oo, o).
In Problem 10.37 you will sketch in a few other curves
using a similar process. You may be able to predict much
of the behavior just by looking at the drawings we’ve already done. Trajectories in the upper-
right-hand corner will generally head up and right, as our example above did. Trajectories
in the lower-left-hand corner will generally head down and left.
Where is the dividing line between these two destina-
Y tions? In Problem 10.38 you will show that the ultimate
2t destiny of any trajectory in this system depends on what
side of y =1 — x the initial conditions fall on. Any path
above this line will eventually head toward (e, c0), while
any path below it will head toward (—co, —oc0). We say that
? ? ? y=1— xisa “separatrix” for this phase portrait, because
) 3 it separates two regions that exhibit qualitatively differ-
- ent behavior.
- If you look closely at the phase portrait you can tell
that y =1 — x is actually made up of two separatrices,

ARERE

bttt

T

4"_
]
]

each one a trajectory that comes in from infinitely far
away and asymptotically approaches the critical point.
Just like a critical point, a separatrix can be attractive,
repulsive, or neither. The drawing shows that the sepa-
ratrices along y = 1 — x are “repulsors”: trajectories near
them move away from them over time. The drawing
also shows another pair of separatrices along y = x — 1.
They are “attractors”: trajectories move toward them
over time. All of the separatrices begin or end on the
critical point (1,0), which is itself neither attractive nor

repulsive.

Drawing phase portraits by hand is not something we
do alot of. It’s a worthwhile exercise to go through a few
times because it gives you a greater appreciation for the
really valuable skill, which is interpreting the behavior of
a system from a given phase portrait.

The phase portrait for x =y, y=x—1
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_ More Critical Points

Problem:
The drawing shows the phase portrait for dx/dt =y, dy/dt = —x> + x — y. Use this
drawing to discuss the possible behaviors of the system.

Solution:
It’s always helpful to start with the critical points. Setting the first equation equal to
zero gives y = 0. The second one is zero when x® = x, with solutions x = 0, +1. We can
see the three critical points on the drawing.

Around those points the phase portrait shows two qualitatively different behaviors.
The system can either spiral in toward the critical point at x = 1 or the one at
x = —1. Dividing those two possibilities are a pair of separatrices, shown in bold.
One approaches the origin from the upper left and the other from the lower right.
(There’s another pair of separatrices connecting the origin to the other critical
points, but we’re going to focus on the ones shown in bold.) It’s far from obvious that
the initial conditions (1, 1) lead toward the point (1, 0) and the initial conditions (3, 1)
lead toward the point (=1, 0), but it’s easy to see those things looking at the phase
portrait.

On a technical note, it can often take a lot of trial and error with the computer to
plot separatrices since you have to find just the right initial conditions. Later in this
section we’ll show you a trick that can help with that.

Alotof the point of the previous two examples is that critical points and separatrices reveal

a tremendous amount about the possible behaviors of the system.

Second-Order Equations

We said above that phase portraits are for systems of coupled first-order differential
equations. They can also be used for second-order equations, however, which include
most of the equations used in physics. The trick is to write one second-order equation as
two firstorder equations. Suppose we have an equation of the form x”(¢) = F(x(t), {). We
can always define a new function v(¢) = ¥'(#), and now we have the two coupled equations

X' () = v(t) and ' (¢) = F(x(¢), t).




7in x 10in Felder ¢10_online.tex V3 -January 21,2015 10:51 A.M. Page 6

&

6 Chapter 10 Methods of Solving Ordinary Differential EQuations (Online)

_ Damped Simple Harmonic Oscillator

Problem:

A mass on a damped spring obeys the differential equation & = —4x — %, where x and
¢ are measured in SI units. Find all the critical points for this system, draw a phase
portrait for it, and describe the possible behaviors.

Solution:
We begin by writing this as two first-order equations.

x=v, Uv=-4x—v

The only critical point occurs at the origin: x = v = 0.

We had a computer graph trajectories for a set of initial conditions laid out along
the unit circle in the first quadrant. We can see that all of the trajectories spiral in
toward a stable equilibrium at the origin. This point represents x = v = 0: the mass is
atrest at x = 0, as we would expect from a damped oscillator.

Remember that every point on a phase portrait represents one possible state of the system.
For a pair of first-order equations for x(¢) and y(), a state is a value for each of those functions.
For a second-order equation % = ..., a state is a value for x and a value for its first derivative—
for instance, the position and velocity of the mass at any given moment—so those are the
axes of the phase portrait.

Some Tips for Generating Phase Portraits on a Computer

In general, we can get a computer to make a phase portrait by giving it a list of initial condi-
tions and having it numerically solve the differential equations for each one. Each solution
will be a pair of functions x(), y(¢), and we can ask the computer to plot the parametrically
defined curve (x, y) for each one. Finally we ask it to show all those curves together on one
plot. Coming up with a good set of initial conditions can be tricky, and in the end there’s no
substitute for trial and error, but some guidelines can help.

We begin by finding all of the critical points and make sure that the initial conditions cover
the region around those critical points. Sometimes a vertical or horizontal line of points can
be useful, sometimes a circle of points around a critical point can help, and sometimes using
a mix of the two can help.

Even with all that, the direction of the trajectories can be a problem. If all trajectories
spiral in toward the origin and we start at a circle of points around the origin, our phase

&
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portrait won’t show anything outside that initial circle. One way to deal with that s to solve the
equations backwards. If our system is % = x + y, y = x then we can generate a valid trajectory
by starting at any initial point and solving X = —x — y, y = —x. That will trace the trajectory
backwards from that point. If we plot the trajectory forwards and backwards from each point
we will cover the phase portrait more effectively.

That backwards trick is especially useful for plotting separatrices that asymptotically
approach critical points. If you look at the figure in “Example: More Critical Points” above,
the separatrices are the only two trajectories that approach the critical point at the origin.
Just choosing random initial conditions it could take forever to find one that just happens
to be on one of the separatrices. So instead we chose two points near the critical point and
evolved the system backwards from those points to plot the separatrices.

Stepping Back: Phase Space

Any physical system has some number of dependent variables. Most commonly these are
functions of time. The state of the system at any given time consists of the value of each
of those variables and, if they obey second-order differential equations, of their derivatives.
Given a set of differential equations for those variables, we can predict the future behavior
of the system from the initial conditions.

A phase portrait is a tool for visualizing those behaviors. Each axis is a dependent variable,
and taken together those axes define all the possible states of the system. That space of all
possible states is called “phase space.” In principle, an object moving in 3 dimensions has a
6 dimensional phase space, because to specify its state we need to give all three components
of'its position and of its velocity. For simpler situations such as an object that can only move
in 1 dimension, however, the phase space is 2 dimensional and a phase portrait can provide
a useful visualization.

10.3.2 Problems: Phase Portraits

7

10.34 Walk-Through: Phase Portraits. Consider the
system described by the equations dx/dt =
x+y, dy/dt = —2y. You’re going to draw a
phase portrait for this system. By the time the
problem is done you’re going to have a lot
on that drawing, so you might want to start
by drawing a big set of axes going from —6
to 6 in both directions. When we ask where
a trajectory begins or ends, remember that
one possible answer is “at infinity.”

(a) Find all critical points of this system.

(That is, find all points where both

%'(¢) and y' (1) are zero.)

(b) Along the x-axis, y'(¢) = 0.
i. What does that imply about all tra-
jectories that start along that axis?
Draw arrows to represent the time
evolution of the system along that
axis. You will need to think about
which way those arrows point.

ii. The positive x-axis is a separatrix for
this system. Is it an attractor or a repul-
sor? Explain how your answer comes
from the equations. Where does this

iii.

trajectory begin and end? (One of
the answers will be “at infinity.”)
The negative x-axis is another sepa-
ratrix. Is it an attractor or repulsor?
Where does it begin and end?

(c) Analyze the behavior in the first quadrant.

i.

ii.

ii.

At the point (1, 1) the derivative in the
x-direction is 2 and in the y-direction
it’s —2. If the system starts at that
point, in what direction will it ini-
tially move in the xy-plane? Draw

an arrow at (1, 1) pointing in that
direction.

What can you say about the direc-
tion of the trajectories everywhere in
the first quadrant? Based on that,
describe the behavior of any trajectory
that starts in the first quadrant.

Sketch a trajectory beginning at the
point (1, 2). You don’t need to be
exact, but try to have the trajectory

at each point going in roughly the cor-
rect direction, and be sure to show the
right behavior in the limit { — oo.

Page 7
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(d) The second quadrant is more
complicated.

i. If a trajectory starts slightly to the left
of the positive y-axis, what direction
will it move in initially? Where will that
trajectory go at late times? Sketch one
such trajectory, starting at (—.1,4).

If a trajectory starts at the point

(=2, 2), what direction will it move

in initially? As soon as it moves away

from that point, what will happen

to its direction? Where will that tra-

jectory go at late times? Sketch the

trajectory starting at (=2, 2).

Explain how your last two answers

imply that there must be a separa-

trix in the second quadrant, passing
somewhere in between the points

(=2,2) and (-.1,4). Is this separa-

trix attractive or repulsive? Where

does it begin and end?

iv. You don’t have enough informa-
tion yet to know the exact shape
of this separatrix; you’ll work that
out in Problem 10.35. For now just
sketch in a curve that matches the
answers you've given about it. Include
arrows showing which direction the
separatrix trajectory goes.

v. You drew two trajectories that started
in the second quadrant. Now extend
them backwards, showing where they
would have come from in order to
reach the points (=2,2) and (-.1,4). As
with all of these sketches your goal is
to show the correct qualitative behav-
ior, not to plot exact curves.

|=H

ii.

|=H

iii.

(e) Describe the behaviors of trajectories
in the third and fourth quadrants. For
each one you’ll have to figure out if you
can do it with a simple argument like
the first quadrant or if it needs more
careful work like the second one. When
you’re done you should have drawn in
one more separatrix and a couple of
other sample trajectories showing the
possible behaviors of the system.

(f) If there are any regions of your phase
portrait where it is not yet clear how the
trajectories behave, sketch in enough
trajectories to make it clear.

(g) Is the one critical point of the system

attractive, repulsive, or neither?

(h

~

The separatrices divide the graph into
four regions. For each region, indicate

10.35

10.36

10.37

how trajectories starting in that region
will evolve over time. What will the sys-
tem approach as ¢ — co in each case?

[This problem depends on Problem 10.34.] In
Problem 10.34 you found roughly where the
separatrices were by looking at the behavior
of the system. In some cases that’s the best
you can do, but in this case you can find the
separatrices analytically by guessing (cor-
rectly as it turns out) that they are lines. The
key is that, for this particular system, the two
separatrices you sketched are the only two
trajectories that end on the critical point at
the origin.

(a) If the system dx/dt = x +y, dy/dt = =2y
starts out at a point (x, y), what is the initial
slope dy/dx of its trajectory? Your answer
should be a function of x and y.

b

-~

Suppose the system starts at a point on the
line y = mx. In order for the trajectory to
stay on that line its initial slope would have
to equal m. Using your answer to Part (a),
write an equation expressing the state-
ment “Starting at the point (x, mx), the
trajectory’s initial slope equals m.”

(©)
(d)

Solve that equation for m.

What is the equation for the separa-
trices other than the positive and neg-
ative x-axes? (The separatrices are
two halves of the same line, so they
have the same equation.)

‘=.' [This problem depends on Problem 10.34.]
Have a computer make a phase portrait

for the system dx/dt = x + y, dy/dt = —2y.
Clearly indicate critical points and separa-
trices. Make sure your phase portrait has
enough trajectories to see the behavior in
each region, and that it includes arrows show-
ing the directions of the trajectories.

Consider the system described by

Equations 10.3.1 with initial condi-

tions x =1, y=2.

(a) Calculate dx/dt and dy/dt at that point.
Based on your answers, in what direc-
tion along the phase portrait will this
trajectory initially move?

After it moves in that direction for a short
time, how will dx/dt and dy/dt change?

(b)
(c) By following the curve along in this way,
trace the trajectory from that point.

(d) The equations % = —y, y = —x+ 1 rep-
resent the same system evolving back-
ward in time. Starting again at (1, 2)

10:51 A.M.
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trace in that direction to complete the
trajectory.

(e) Draw a similar trajectory starting
at the origin.

10.38 The Explanation (Section 10.3.1) claimed
that Equations 10.3.1 have a repulsive sepa-
ratrix along the line y = 1 — x. In this prob-
lem you will show how the equations lead
to the behavior we saw in the computer-
generated phase portrait.

(a) Show mathematically that at any
point along this line j = —x%. What
does that imply about the time
evolution of the system if the initial
condition lies on that line?
Now consider three points. The point
B = (x,, y,) lies directly on the line y = 1 — x.

The point A = (x,, y, + Ay) lies directly above
that point, and C = (x,, y, — Ay) directly below.

(b) How does dx/dt at point A compare to
dx/dt at point B?
How does dy/dt at point A compare to
dy/dt at point B?

(c

~

(d) We have seen what will happen to the sys-

tem if it starts at point B. Based on that

and your answers, what will happen to the

system if it starts at point A? Will it move
closer or farther from the line y = 1 — x?
(e) Repeat this analysis for point C.
[This problem depends on Problem 10.38.] Show
that Equations 10.3.1 have an attractive sep-
aratrix along the line y = x — 1.

10.39

In Problems 10.40-10.42 you will be given a phase
portrait. Classify all of the critical points and
separatrices as attractive, repulsive, or neither.
Describe how the system will evolve in time. (Your
answer will almost always be of the form “if it starts
in this region, then...”)

10.40
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In Problems 10.43-10.50 sketch a phase portrait for
the given set of equations. Your phase portrait should
show all the critical points and enough trajectories to
indicate the possible behaviors of the system.

10.43
10.44
10.45
10.46
10.47
10.48
10.49
10.50

dx/dt =4y, dy/dt = x
dx/dt =y, dy/dt =—-x—y
dx/dt =y, dy/dt =—-x+y
dx/dt =y, dy/dt=x—y
dx/dt = x+y, dy/dt = x—y
dx/dt =y, dy/di = x> +y
dx/dt=y?, dy/dt = —x
dx/dt = p, dy/dt = ¢.

10.51 Given a pair of equations x'({) = f(x, y) and
¥ (¢) = g(x, y), write the equations that draw
the same trajectories but in the opposite

direction.

10.52 Given a pair of equations x'(¢) = f(x,y) and
¥ (1) = g(x, y), write an equation for the slope
dy/ dx of the trajectory at the point (x, y).

10:51 A.M.
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|
== In Problems 10.53-10.58 you will be given a

second-order differential equation. Rewrite it as two
coupled first-order equations. Have a computer draw
the phase portrait for those two equations, and use

that phase portrait to predict the possible time

evolution of the system. A good answer would look
like “If it starts with x > 5 moving to the right it will
move in a positive direction forever. If it starts at x > 5

at rest or moving left slowly enough it will start

moving right and continue that way forever. If it starts

at x < 5 then...”

10.53 x"(1)+9x(1) =0

10.54 %" () + 5x/'(¢) + 6x(1) = 0
10.55 x"(t) + 5x'(¢) + 6x(8) = 2
10.56 (1) — 5x/(1) + 6x(1) = 2
10.57 x"()+ x> =0

10.58 (1) + tan(4xx) = 0

10.59 If you have a second-order differential

equation for x(¢) you can draw a phase por-
trait for it where the axes are x and x. With-

out knowing anything else about the sys-
tem, what can you conclude about what

the trajectories look like? In other words,

what must be true about all phase por-
traits for second-order equations that is

not necessarily true about phase portraits

for coupled first-order equations?

10.60 Explain why a trajectory cannot begin or end

at any point other than a critical point.

|

10.61 == Inflationary Cosmology According to
the theory of “inflation,” the early universe
went through a period during which virtu-

ally all of the energy was in the form of a

“scalar field.” You don’t need to know what
a scalar field is to solve this problem. All you
need to know is that in the simplest model
of inflation the field ¢ obeys the differential

equation ¢+ mip+ \V 1271:(;(472 + m?¢?) = 0.

(a) Define v = ¢ and rewrite this second-

order equation as two coupled first-
order equations for ¢ and v.

(b) What is the one critical point
for this system?

(c) Have a computer draw a phase portrait

for the system. You can set the con-

stants G and m equal to 1. There are two
separatrices. Where do they begin and
end? (In each case one of the answers

is “at infinity.”) Are they attractive or
repulsive?

(d) For a typical trajectory, describe the evolu-
tion of the system. What happens at early
times, middle times, and late times?

Exploration: The pendulum. A rigid
undamped pendulum of length [ obeys
the differential equation

2o g .
ﬁ+25m9_0

where 6 is the pendulum’s angle off the ver-
tical and g is the gravitational constant. The
usual approach is to say that sin 6 ~ 6 for
small 6, which reduces the equation to the
simple harmonic oscillator equation. This
approximation only works for small 6, but
the equation is difficult to solve more gen-
erally. (Go ahead and try. We dare you.)

Pl S

(a) Rewrite this equation as two coupled first-
order equations. What variables should
go on the axes of the phase portrait for
this system? Draw a set of axes with those
labels. You'll fill in the phase portrait
as you go through the problem.

(b) What are the critical points for the sys-
tem? What physical states do these points
represent? Hint: Mathematically there are
infinitely many critical points, but there are
only two states they can represent. Draw a
few of these points on your plot.

(c) If the pendulum starts at the bot-
tom (6 = 0) and you give it a little
push it will swing back and forth.

Draw a set of trajectories on your plot
representing this motion. Include
arrows showing the direction of the
trajectories.

(d

=

If instead you give the pendulum a large
push it will swing in circles. Draw a set of
trajectories on your plot showing motion
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in clockwise circles, and another set show- (e) You've drawn trajectories showing two
ing counterclockwise circles. (We said types of motion, oscillations and circles.
the pendulum is rigid, a rod instead of Draw separatrices on your plot in

a string, so the bob always stays a dis- between those types of motion.

tance L from the center, even when Where do those separatrices begin

0 > 7/2.) Again, include arrows on the and end? What do they represent
trajectories. physically?



