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12.10 Special Application: The Quantum
Harmonic Oscillator and Ladder Operators
In this section we’re going to derive the possible states of a particle in a potential field
V = (1∕2)kx2, an important problem in quantum mechanics. To do that we have to intro-
duce the technique of “ladder operators.” To do that we have to spend some time on the
notation of operators, and especially on the idea of a “commutator.” As usual, the math you
pick up along the way will apply to a variety of different physical situations.

If you haven’t worked much with differential operators we recommend starting with the
Discovery Exercise, which will give you some practice with them.

What we are not going to do in this section is explain the basics of quantum mechanics:
Schrödinger’s equation, eigenstates and energy levels, normalization, and so on. If you have
never seen any quantum mechanics this section may assume too much for you. If you are
particularly interested we have two papers on the subject. (We highly recommend reading
the first one before the second one.)

∙ http://www.felderbooks.com/papers/quantum.html is a non-mathematical
introduction to some fundamental ideas of quantum mechanics, how those ideas
radically depart from classical physics, and why this radical departure is necessitated
by experimental results.

∙ http://www.felderbooks.com/papers/psi.html is an overview of the math-
ematical approach required to solve quantum mechanical problems. If you got lost
somewhere between the second-order PDE, the Fourier transform, and the eigenstates,
this may help you see how they fit together.

12.10.1 Discovery Exercise: The Quantum Harmonic Oscillator
and Ladder Operators

The derivative d∕dx is called an “operator,” meaning it takes as input a function and pro-
duces as output another function. We will abbreviate that derivative as D. The operator x
just multiplies any function by x. So for example, the operator D − x acting on the function
f (x) = x2 produces the function (D − x)f = 2x − x3. For this exercise we define the operators
âR = D − x and âL = D + x.

1. Calculate âL sin x. (This should be very simple; we just want to make sure you’re clear
on the notation.)

See Check Yourself #88 in Appendix L

2. Calculate âLâRx
2. (Read this as “act with âR on x2, then act with âL on the result.”)

The easiest way to do algebra with operators is to see what they do to an arbitrary function.
For example, the operator Dx acting on a function f gives (d∕dx)(xf ) = x(df ∕dx) + f . We can
then take out the f and write Dx = xD + 1, where the 1 represents the operator “multiply the
function by 1.”

3. Calculate âLâR . Hint: a second derivative is D2 in operator notation.

See Check Yourself #89 in Appendix L

4. The “commutator” of two operators Â and B̂ is defined as
[
Â, B̂

]
= ÂB̂ − B̂Â. Calculate

the commutator
[
âL , âR

]
.
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12.10.2 Explanation: The Quantum Harmonic Oscillator
and Ladder Operators

A particle that experiences a force F = −kx is a simple harmonic oscillator. Its potential
energy is V = (1∕2)m𝜔2x2 where m is the particle’s mass and 𝜔 =

√
k∕m. The quantum

mechanical wavefunction for such an oscillator must obey Schrödinger’s equation with that
potential function.

− ℏ
2

2m
d2𝜓
dx2

+ 1
2
m𝜔2x2𝜓 = E𝜓 (12.10.1)

Here ℏ is a constant of nature andm and 𝜔 are both constant for a particular physical system.
The energy E , however, can take on different values. The solution 𝜓(x) for any particular E
is the wavefunction for the state where the particle has that value of energy. Classically the
particle could have any energy from 0 to ∞, but quantum mechanically only certain values
of E are possible. Those are the eigenvalues of Equation 12.10.1 subject to the boundary
conditions that 𝜓(x) must be finite at x → ±∞.

In this section we will find the eigenvalues E and corresponding eigenfunctions 𝜓(x)
that represent the energy states of the quantum harmonic oscillator. In Section 12.11 Prob-
lem 12.162 you’ll solve this problem using the method of power series, but it involves a few
subtleties. In this section we’ll solve it in a very different way, using the so-called “ladder
operators” developed by Paul Dirac.

You’ll show in Problem 12.148 that the substitutions y =
√
m𝜔∕ℏ x and λ = 2E∕(ℏ𝜔) let us

rewrite Equation 12.10.1 as:
d2𝜓
dy2

− y2𝜓 + λ𝜓 = 0 (12.10.2)

We’re going to solve this problem in two steps. First we’ll show you a trick that will allow us
to find the eigenfunctions and eigenvalues quickly and easily. In that part we’ll present this
trick with no justification, as if it had been handed to Dirac on stone tablets. Later we’ll show
where the trick came from, which will suggest how you might apply it to other problems.

The Trick with No Justification

Suppose 𝜓m(y) is an eigenfunction of Equation 12.10.2 with eigenvalue λ = cm . One day, for
no obvious reason, Paul Dirac asks us to see if 𝜓n = d𝜓m∕dy + y𝜓m happens to be an eigen-
function of the same equation. Agreeably, we begin by finding its first derivative.

𝜓n =
d𝜓m
dy

+ y𝜓m →
d𝜓n
dy

=
d2𝜓m
dy2

+ y
d𝜓m
dy

+ 𝜓m

Now remember that 𝜓m is an eigenfunction of the differential equation with eigenvalue cm ,
so we know that d2𝜓m∕dy2 = y2𝜓m − cm𝜓m .

d𝜓n
dy

= y2𝜓m − cm𝜓m + y
d𝜓m
dy

+ 𝜓m

= y
d𝜓m
dy

+
(
y2 − cm + 1

)
𝜓m

d2𝜓n
dy2

= y
d2𝜓m
dy2

+
(
y2 − cm + 2

) d𝜓m
dy

+ 2y𝜓m

=
(
y2 − cm + 2

) d𝜓m
dy

+
(
y3 + 2y − ycm

)
𝜓m
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Now plug that into d2𝜓n∕dy2 − y2𝜓n. If 𝜓n is an eigenfunction then the result should be a
constant (minus the eigenvalue) multiplied by 𝜓n.

d2𝜓n
dy2

− y2𝜓n =
(
−cm + 2

) d𝜓m
dy

+
(
2y − ycm

)
𝜓m = −(cm − 2)

(
d𝜓m
dy

+ y𝜓m
)

= −(cm − 2)𝜓n

We’ve therefore shown that the function 𝜓n is in fact an eigenfunction of Equation 12.10.2,
and its eigenvalue is cm − 2. In Problem 12.149 you’ll go through a similar calculation to show
that d𝜓m∕dy − y𝜓m is also an eigenfunction, with eigenvalue λ = cm + 2. So all we need to do
is find one eigenfunction and these two operators will generate as many more as we wish.

But Sturm-Liouville theory says there should be a lowest eigenvalue. If we keep applying
d𝜓m∕dy + y𝜓m it seems that we will keep finding different eigenfunctions, each with a lower
eigenvalue than the one before. The series will only terminate if we find that d𝜓m∕dy + y𝜓m
gives us zero; then there will not be another valid eigenfunction, so there will be no lower
eigenvalues.

Conveniently that fact lets us find the lowest eigenfunction. The solution to d𝜓∕dy + y𝜓 = 0
is 𝜓 = C0e−y

2∕2, so that is the state with the lowest eigenvalue. In Problem 12.150 you’ll derive
that solution and show that its eigenvalue is λ = 1.

If we apply our trick to find the next eigenfunction we get 𝜓 = (d∕dy)(C0e−y
2∕2) −

yC0e
−y2∕2 = −2C0ye−y

2∕2 with eigenvalue λ = 3. Each eigenfunction can have a different
arbitrary constant in front of it, however, so we replace −2C0 with a new constant C1.

The remaining solutions will have eigenvalues 5, 7, 9, and so on. The last step is to convert
back to our original variables x and E instead of y and λ. Any constants that appear in front
of the functions can be absorbed into the arbitrary constants, and the resulting first few
eigenfunctions are as follows.

𝜓0(x) = C0e−m𝜔x
2∕2ℏ E = (1∕2)ℏ𝜔 The ground state

𝜓1(x) = C1xe−m𝜔x
2∕2ℏ E = (3∕2)ℏ𝜔 The first excited state

𝜓2(x) = C2[(2m𝜔∕ℏ)x2 − 1]e−m𝜔x2∕2ℏ E = (5∕2)ℏ𝜔 The second excited state

The constants Cn are determined by the “normalization condition” ∫ ∞
−∞ 𝜓(x)

2dx = 1. See
Problem 12.151.

Reframing the Problem in the Language of Operators

To see where that trick came from we need to talk about the problem in terms of “operators.”
We introduced operators in Chapter 10 but we’ll recap the key ideas here. Becoming com-
fortable with operators will be more useful in the long run than anything you learn about
quantum oscillators.

An operator acts on a function to produce another function. For instance if D is the oper-
ator “take the derivative with respect to y” then we can write D(y3) = 3y2.

When a constant is used as an operator it indicates multiplication. So the operator 7 turns
y3 into 7y3, and the operator 1 turns any function into itself.

All the operators that concern us in this section will be “linear operators.” An operator Â
is linear if it obeys the following two rules.

∙ Â(f + g ) = Âf + Âg
∙ Â(kf ) = kÂf

The product of two operators ÂB̂ is defined as the operator “do B̂, then Â.” It’s important
to go right to left, just as with matrices, and for the same reason: so that (ÂB̂)f is the same
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function as Â(B̂f ). (Formally this means that operator multiplication is “associative.”
Informally it means we can put parentheses anywhere we like in a string of operator
multiplications.)

EXAMPLE Operator Multiplication

Define the operator D to mean “take the derivative with respect to y.” The operator y
means “multiply the function by y.”

Question:What do the operators yD and Dy do to a function f (y)?

Answer:

yDf = y
(
df
dy

)

Dyf = d
dy

(yf ) = y
(
df
dy

)
+ f

We see that Dyf = yDf + f , an equation that relates two functions. We can rewrite that
as an equation that directly relates two operators: Dy = yD + 1. (Remember what the
operator “1” means!)

The example above illustrates the very general fact that operator multiplication is not com-
mutative. If you want to switch the order of an operator multiplication you need to use a
“commutator,” as we discuss below. Note also that, because of this definition of operator
multiplication, squaring an operator means doing that operator twice. So D2 gives a second
derivative, not a first derivative squared.

With this terminology we can rewrite Equation 12.10.2 as (D2 − y2)𝜓 + λ𝜓 = 0. We left
the λ term separate to make it clear that this equation is asking for the eigenvalues and
eigenfunctions of the operator D2 − y2. If these were numbers we could factor that into
(D + y)(D − y), or equivalently (D − y)(D + y). Since these are operators instead of numbers
those two expressions are not equivalent, and in fact neither one gives D2 − y2.

Let’s see what they do give us. Since operators are defined by how they act on functions,
it’s easiest to manipulate them by putting a function after them, so we’ll consider how these
operators act on an arbitrary function f (y).

(D + y)(D − y)f =
(
d
dy

+ y
)(

df
dy

− yf
)

=
d2f

dy2
− d
dy

(yf ) + y
df
dy

− y2f

=
d2f

dy2
− y

df
dy

− f + y
df
dy

− y2f = (D2 − 1 − y2)f

We can now drop the f and write an operator equation.

(D + y)(D − y) = (D2 − y2 − 1)

In Problem 12.141 you’ll do a similar calculation to show that (D − y)(D + y) = (D2 − y2 + 1).
The key ideas in this section flow from calculations like the one above, so we urge

you to go through it carefully. The −1 in our final result came from the difference
between “multiplying-by-y-and-then-taking-a-derivative” and “taking-a-derivative-and-then-
multiplying-by-y.” The order of operator multiplication usually matters, as it does in this
case. When you want to reverse the order you need the “commutator.”
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Definition: Commutator
The “commutator” of two operators is the difference between multiplying them in different
orders. [

Â, B̂
]
= ÂB̂ − B̂Â

If two operators “commute” (that is, ÂB̂ = B̂Â) then their commutator is zero. You should be
able to easily convince yourself that every operator commutes with itself: [Â, Â] = 0. The sec-
ond rule we gave above for linear operators can be expressed as “a linear operator commutes
with a constant operator.”

The list below summarizes some of the important arithmetic properties of linear
operators.

Property Name Why it Works

(ÂB̂)Ĉ = Â(B̂Ĉ) Associative Property This is true for all operators, because ÂB̂ is
defined as the operator that makes this true.

(Â + B̂)Ĉ = ÂĈ + B̂Ĉ Distributive Property This is true for all operators, because Â + B̂ is
defined as the operator that makes this true.

Â(B̂ + Ĉ) = ÂB̂ + ÂĈ Distributive Property This is part of the definition of a linear
operator.

Âk = kÂ Commuting with a
constant

This is part of the definition of a linear
operator.

ÂB̂ = B̂Â +
[
Â, B̂

]
Commutator This is the definition of the commutator.

The following example shows how to use these properties. Operator arithmetic is a useful
skill in general, but the particular operators in the example will also be important for our
purposes.

EXAMPLE Commutator

Let âL = D + y and âR = D − y. (The reasons for the subscripts R and L will become
clear later.)

Problem:
Find the commutator

[
âR , âL

]
.

Solution:
We found âLâR above, and you will find âR âL in Problem 12.141. All that remains is
to subtract them. [

âR , âL
]
= âR âL − âLâR = 2

That means that we can replace âR âL in any equation with âLâR + 2. (Every time an
âR passes right through an âL it picks up a +2.) Equivalently, we can replace âLâR
with âR âL − 2. (Every time an âR passes left through an âL it picks up a −2.)

Problem:
Rewrite P̂ = âLâLâR with the âR on the left.
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Solution:
Pay careful attention to what operator properties we use at each step of
this solution.

P̂ = âL(âLâR )
= âL(âR âL − 2)
= âLâR âL − âL2
= (âLâR )âL − 2âL
= (âR âL − 2)âL − 2âL
= âR âLâL − 2âL − âL2
= âR âLâL − 4âL

If it’s useful for your calculations you can rewrite this as P̂ = (âR âL − 4)âL.

Raising and Lowering Operators

We now return to Equation 12.10.2. Since we found that (D + y)(D − y) = (D2 − y2 − 1) we can
rewrite this equation in terms of our operators âL and âR .

(âLâR + 1)𝜓 + λ𝜓 = 0 (12.10.3)

We found above that
[
âR , âL

]
= 2 so we will replace âR âL with âLâR + 2 in the middle of the

following calculation, leading us to the same equation with a different eigenvalue.

(âLâR + 1)(âL𝜓m) + λ(âL𝜓m) = âLâR âL𝜓m + (1 + λ)âL𝜓m
= âL(âLâR + 2)𝜓m + (1 + λ)âL𝜓m
= âL(âLâR𝜓m) + (3 + λ)âL𝜓m

We now use the fact that 𝜓m is an eigenfunction to replace âLâR𝜓m with (−1 − cm)𝜓m ,
which gives:

(2 − cm + λ)âL𝜓m = (2 − cm + λ)𝜓n

We conclude that 𝜓n is an eigenfunction with eigenvalue λ = cm − 2, and a similar calcula-
tion leads us to conclude that âR𝜓m is an eigenfunction with eigenvalue λ = cm + 2. (See
Problem 12.149.)

The operators âR and âL are called the “raising” and “lowering” operators for this prob-
lem. (Hence the subscripts.) The raising operator takes any eigenfunction and turns it into
the one with the next highest eigenvalue, and the lowering operator turns it into the one
with the next lowest eigenvalue. When you act with the lowering operator on the ground
state you get 0, which leads to the alternative names “annihilation” and “creation” opera-
tors.13 Together, âR and âL are called “ladder operators” because they generate a ladder of
states with eigenvalues stretching upward from the ground state.

13These names make more sense in quantum field theory, where the eigenvalue represents the number of particles.
Then the annihilation operator takes you from a state with n particles to one with n − 1, and the creation operator
takes you to one with n + 1 particles.



7in x 10in Felder c12_online.tex V3 - February 27, 2015 5:51 P.M. Page 10

10 Chapter 12 Special Functions and ODE Series Solutions (Online)

Stepping Back

We just solved the quantum oscillator problem twice, once by manipulating differential
equations and then again in the more abstract language of operators.14 You may reasonably
feel that the second approach made the problem look more confusing without giving
you anything new, so we want to point out a few reasons why the operator approach
is in the long run better. It’s worth putting in the effort to learn to work with oper-
ators now, since they are used widely in quantum mechanics, optics, and a variety of
other fields.

For one thing, operators make the calculations easier. Of course the operators are just
shorthand for pieces of differential equations, but once you rewrite the equation in terms
of âR and âL and calculate their commutator you’ve reduced a calculus problem to a simple
algebra problem.

More importantly the operator formulation shows why this strange trick worked, and that
allows you to apply it to other problems. When we plugged âR𝜓m into Equation 12.10.3 we
had to move the âR to the left of âLâR so we could simplify by acting with âLâR on the
eigenfunction 𝜓m . Because [âL , âR ] is a constant, the result was to simply add a constant to
the eigenvalue in the equation. In Problem 12.152 you’ll try this trick on a similar problem
where the commutator of the two operators is not a constant, and you’ll see that it doesn’t
work. Problem 12.153 is another problemwhere it does work, finding the angularmomentum
values of the hydrogen atom.

Finally, a warning: if you take a course on quantum mechanics, expect to encounter
different conventions from those we used here. The conventional ladder operators,
usually denoted â+ and â−, are related to ours by â− = âL∕

√
2 and â+ = −âR∕

√
2.

We therefore ended up with the commutator [âR , âL] = 2 rather than the more
common [â−, â+] = 1.

12.10.3 Problems: The Quantum Harmonic Oscillator
and Ladder Operators

The problems in this section assume the following definitions.

D = d∕dy âR = D − y âL = D + y

You will also make frequent use of the following fact (derived in the Explanation above).

[
âR , âL

]
= 2 → âR âL = âLâR + 2

This means that you can pass âR right through âL and pick up a +2, or pass âR left through âL and
pick up a −2.

14Remember when the differential equations themselves seemed hopelessly abstract? Ah, those innocent
bygone days.
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12.139 In the box on Page 8 we step through the
process of rewriting the operator âLâLâR
with âR on the left. Copy that solution (only
the part about the three operators) and say
what operator property justifies each step.
Hint: None of the steps depends in any way
on knowing what the operators âL and âR
are. Some steps depend on knowing that
both are linear operators, and other steps
depend on knowing their commutator.

12.140 Operator Algebra Commutators are used
to pass one operator “through” another, as
in the example that starts on Page 8.
(a) Rewrite each of the following expressions

so every âR is to the right of every âL .
i. âR âLâR
ii. âR âLâL

(b) Suppose 𝜓 is an eigenfunction of the
operator âR with eigenvalue λ, which
means âR𝜓 = λ𝜓 . Use that fact and the
commutator above to simplify the expres-
sion âR âL𝜓 as much as possible.

(c) Suppose 𝜙 is an eigenfunction of the
operator âR âL with eigenvalue 𝛾 . Is 𝜙
an eigenfunction of âLâR? If not, explain
why not. If so, find its eigenvalue.

12.141 Calculate each of the following. Give your
answers in terms of D and y, not âR and âL .
(a) [D, y]
(b) â2R
(c) âR âL

12.142 Calculate each of the following. Simplify your
answers as much as possible. You should be
able to answer all of these just from know-
ing the commutator [âR , âL], without having
to use the definitions of âR and âL .
(a) [âL , â

2
L]

(b) [âL , âLâR ]
(c) [âLâR , âR âL]

12.143 Prove that [Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ] for
any linear operators Â, B̂, and Ĉ .

12.144 In the Explanation (Section 12.10.2) we
listed the first three eigenfunctions of
the quantum oscillator. Calculate the
next two.

12.145 In the Explanation (Section 12.10.2) we
listed the first three eigenfunctions of the
quantum oscillator. Verify that the lower-
ing operator âL acting on 𝜓2 (the “sec-
ond excited state”) gives you 𝜓1.

12.146 It’s possible to find the ground state
energy of the quantum oscillator using
operators rather than calculus.

(a) Rewrite Equation 12.10.3 in terms
of âR âL rather than âLâR .

(b) Let 𝜓0 be the ground state eigenfunction.
Don’t use the formula we derived; just
leave it as 𝜓0 and put it into the equation
you just wrote. What value does λ have to
have in order for this equation to work?
Hint: remember what âL does when it
acts on 𝜓0.

12.147 In this problem you will examine the dif-
ferential equation B̂Â𝜓 + λ𝜓 = 0 where Â
and B̂ are two linear operators about which
you know only one thing: [Â, B̂] = 5.

(a) We begin by assuming that we have
already found one solution. Write
an equation that asserts “𝜓m is an
eigenfunction of this differential
equation, with eigenvalue λm .”

(b) Show that 𝜓n = B̂𝜓m is an eigenfunction
of the same differential equation and
find its eigenvalue λn in terms of λm .

(c) Write a differential equation that you
could solve to find the eigenfunction
with the lowest eigenvalue. This differ-
ential equation will involve the unknown
operators so you cannot solve it.

(d) Find the lowest eigenvalue for this
equation, and use that to find what
all the possible eigenvalues are. (If
you’re stuck on how to find the low-
est eigenvalue you may find it help-
ful to look at Problem 12.146.)

12.148 Derive Equation 12.10.2 from Equation
12.10.1 using the substitutions given in
the Explanation (Section 12.10.2).

12.149 In this problem you will prove that the rais-
ing operator works as advertised.
(a) Prove that if 𝜓m is an eigenfunction of

Equation 12.10.2 with eigenvalue cm ,
then d𝜓m∕dy − y𝜓m is also an eigen-
function, with eigenvalue cm + 2. Your
proof should just involve functions
and derivatives, with no operator
notation.

(b) Prove that if 𝜓m is an eigenfunction
of Equation 12.10.3 with eigenvalue
cm , then âR𝜓m is also an eigenfunc-
tion, with eigenvalue cm + 2. Your proof
should use operators and commutators,
with no derivatives written out.

12.150 In the Explanation (Section 12.10.2) we
said that the equation d𝜓0∕dy + y𝜓0 = 0
would give us the ground state of the
quantum harmonic oscillator.
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(a) Explain how we know that the solution
to this particular equation will give us the
eigenfunction with the lowest eigenvalue.

(b) Solve the equation by separating
variables.

(c) Plug your solution into Equation 12.10.2
to show that it works, and to find the
corresponding eigenvalue.

12.151 In the Explanation (Section 12.10.2) we
listed the first three eigenfunctions of
the quantum oscillator, and we noted
that the arbitrary constants in front are
determined by the normalization condi-
tion ∫ ∞

−∞ 𝜓(x)
2dx = 1. Use that condition

to calculate C0. You may use the fact that
∫ ∞
−∞ e

−x2dx =
√
𝜋. (You solved a minor

variation of that integral in Section 12.3
Problem 12.49).

12.152 A particle with potential energy V =
(1∕4)𝜅x4 oscillates, but it is not a “sim-
ple harmonic oscillator.” Schrödinger’s
equation for that particle is:

− ℏ2

2m
d2𝜓
dx2

+ 1
4
𝜅x4𝜓 = E𝜓

(a) Define a new independent variable
y and a new eigenvalue λ and use
them to rewrite this without any con-
stants other than λ in it. Your answer
should look similar (but not iden-
tical) to Equation 12.10.2.

(b) Define â1 = D + y2 and â2 = D − y2 and
rewrite the differential equation in terms
of these operators, with no explicit
derivatives. (See Equation 12.10.3 for
example.) There is more than one
possible way to do this. Hint: begin
by calculating â1â2 and â2â1.

(c) Calculate the commutator [â1, â2].

(d) Assume 𝜓m(y) is an eigenfunction with
eigenvalue cm . Plug in 𝜓n = â1𝜓m and
show that it is not an eigenfunction.
As part of this process you should rear-
range your equation (by using the com-
mutator) so you can make use of the
fact that 𝜓m is an eigenfunction.

(e) Explain what went wrong. What was
it about the commutator [â1, â2] that
meant the trick didn’t work here
the way it did for the simple har-
monic oscillator equation?

12.153 A hydrogen atom consists of an electron
orbiting about a proton. There is an opera-
tor L̂z that corresponds to the z-component
of angular momentum in the following sense.
If the particle is in a state where it has a def-
inite z-component of angular momentum
𝜇, then the particle’s wavefunction 𝜓(x, y, z)
obeys the eigenvalue equation L̂z𝜓 = 𝜇𝜓 .
In other words the eigenfunctions of this
equation represent the possible states of defi-
nite z-angular momentum. Similar equations
hold for the operators L̂x and L̂y.
It’s possible to write these operators out

explicitly in terms of x, y, z, 𝜕∕𝜕x, 𝜕∕𝜕y,
and 𝜕∕𝜕z, but we’re not going to bother.
All you need to know about them is their
commutation relations: [L̂x , L̂y] = iℏL̂z ,
[L̂y, L̂z] = iℏL̂x , and [L̂z , L̂x] = iℏL̂y. To find
the eigenvalues of the L̂z equation, we define
the ladder operators L̂+ = L̂x + iL̂y and
L̂− = L̂x − iL̂y.
(a) Calculate [L̂z , L̂+] and [L̂z , L̂−]. Simplify

your answers as much as possible.
(b) Suppose 𝜓m is an eigenfunction of

L̂z with z-angular momentum 𝜇 = cm .
Show that L̂+𝜓m and L̂−𝜓m are also
eigenfunctions of L̂z , and find their
z-angular momenta.


