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13.10 Special Application: Fluid Flow
We have seen how analytic functions can be used to solve Laplace’s equation under a variety
of boundary conditions—first in simple regions (Section 13.3) and then, using conformal
mapping, inmore complicated regions (Section 13.9). Our applications for these techniques
have all been steady-state temperature and electrostatic potential problems. In this section
we apply those same techniques to the slightly more complicated problem of fluid flow.

Velocity Fields and Stream Functions

Figure 13.18 shows a rock in a stream. Our goal is to mathematically model the flow of the
water around this rock. That is, we want to find the water’s velocity field v⃗(x, y).

FIGURE 13.18 Flow of water around a circular
obstacle.

If we neglect viscosity then the flow can be con-
ceptually divided into thin curves of flowing liquid
that exert no forces on each other. These curves,
called streamlines, are shown in Figure 13.18. We
could replace all the water below one of those
streamlines with a solid boundary and the flow above
that streamline would be unaffected.
This particular problem has two boundary con-

ditions. The first is the rock. Because no water
flows into or out of the rock, one streamline must
lie directly along the top curve of the rock, and
another streamline along the bottom curve. The sec-
ond boundary condition is “at infinity”—far away
the rock is irrelevant, so the streamlines are evenly
spaced horizontal lines.
The technique we are going to present here works

for this problem and many others like it, but let’s
start by laying out its limitations. We’re going to
assume throughout this section that the velocity field

is divergenceless (∇⃗ ⋅ v⃗ = 0) and irrotational (∇⃗ × v⃗ = 0⃗). Wewill also restrict ourselves to flow
in two dimensions. While real fluid flow occurs in 3D, 2D flow is a good model for systems
ranging from shallow streams to wind across an airplane wing. (Movement sideways to the
airplane is not generally too significant.)

The Stream Function

Instead of directly finding the velocity function we will spend most of our efforts finding a
scalar field called the “stream function” 𝜓(x, y). We can find such a function, and then find
v⃗ from it, provided ∇⃗ ⋅ v⃗ = 0 (one of the assumptions we mentioned above). We define this
new function by its relationship to the vector we are looking for.

∙ If you have 𝜓 and you want v⃗ you take derivatives.

v⃗(x, y) = 𝜕𝜓

𝜕y
î − 𝜕𝜓

𝜕x
ĵ (13.10.1)

This equation may remind you of how we differentiate the potential V to find the elec-
tric field E⃗ , although you should certainly note the differences as well as the similarities.
You will see below that the way we integrate v⃗ to find 𝜓 is reminiscent of the way we get
from E⃗ to V , but again different in important ways. We do want to draw your attention
to one important similarity between the two systems: what matters is the change in 𝜓
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from one point to another, not its actual value, so you can choose any point you like
to set 𝜓 = 0.

∙ If you have v⃗ and you want 𝜓 you begin by choosing an arbitrary point (x0, y0) as the
place where 𝜓 = 0. Then draw a curve C connecting this point to a second point (x, y).
At this second point 𝜓 is the flux of v⃗ through that curve—in other words the number
of streamlines passing through the curve.

𝜓(x, y) = ∫C
(
v⃗ ⋅ n̂

)
ds (13.10.2)

You will show in Problem 13.141 that this flux is the same along any curve between
(x0, y0) and (x, y). (This definition leaves the sign of𝜓 ambiguous since the flux through
an open contour requires a decision about which direction is positive. When necessary
this ambiguity can be removed using Equation 13.10.1.)

∙ Visually, the contour lines of 𝜓 (the curves along which 𝜓 is constant) are the streamlines
of v⃗.

c
((xx11,,yy11))

((xx22,,yy22))

(x1,y1)

(x2,y2)

FIGURE 13.19 A curve lying
directly along a streamline.

These rules are three different ways of expressing the same rela-
tionship between 𝜓 and v⃗, but not obviously so. As one way to
begin to see the connection, Figure 13.19 shows a streamline
between two points and a curve C that lies directly along the
streamline. Because C lies directly along a streamline, there
is no flux of the stream through the curve. This means that
𝜓(x1, y1) and 𝜓(x2, y2) are the same as each other. So you can
see why the streamlines of v⃗ become the curves along which 𝜓
is constant.
In Problem 13.142 you will show how Equation 13.10.2

implies Equation 13.10.1.

EXAMPLE The Stream Function and the Velocity Field

Question: For water flowing uniformly in the horizontal direction (such as the water
far away from the rock in Figure 13.18) the streamlines are evenly spaced horizontal
lines. What are v⃗ and 𝜓 in that situation?

Answer:

In the picture (0, 0) is the point we have arbitrarily chosen to represent 𝜓 = 0 and
(x, y) is the point where we want to find 𝜓 . We have drawn a curve C between them.
The flux through this curve—the amount of water that passes through it—is directly
proportional to y − y0, independent of the x-values of the two points. From
Equation 13.10.2, then, 𝜓(x, y) = ky fits this stream. We can use Equation 13.10.1 to
go back the other way.

(x,y)

C

(0,0)

FIGURE 13.20

𝜓(x, y) = ky → v⃗ = 𝜕𝜓

𝜕y
î − 𝜕𝜓

𝜕x
ĵ = kî

This correctly predicts a uniform horizontal flow.
Note that Figure 13.20, which we drew to represent the
streamlines of the flow, is also a picture of the contour
lines of 𝜓(x, y) = ky: evenly spaced horizontal lines.
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(x,y)
ψ = 4

ψ = 3

ψ = 2

ψ = 1

ψ = 0

C

(0,0)

FIGURE 13.21

As a final note on this example, the
function 𝜓(x, y) = ky + A works perfectly for any constant
A. Δ𝜓 between any two points is still proportional
to y − y0 (the flux), and 𝜕𝜓∕𝜕y is unchanged.
Choosing a constant A for this solution is equivalent to
choosing an arbitrary streamline on which to set 𝜓 = 0.

Question: How does all that change for 𝜓 = ky2?

Answer:

The contour lines of 𝜓 are once again horizontal, but
this time they are not evenly spaced. An identical curve
at a higher y-value would have more streamlines passing
through it, i.e. a higher flux. (Figure 13.21.)

𝜓(x, y) = ky2 → v⃗ = 𝜕𝜓

𝜕y
î − 𝜕𝜓

𝜕x
ĵ = 2kyî

Finding the Stream Function

The two examples above make sense, both mathematically and visually, but there is a subtle
difference between them that you probably didn’t notice. The first velocity field, v⃗ = kî, is
“irrotational”: that is, ∇⃗ × v⃗ = 0⃗. The second velocity field does not have a zero curl.
At the beginning of this section we said that we were going to restrict our discussion to

irrotational fields. As you will prove in Problem 13.140, the assumption of irrotational fluid
flow corresponds to the restriction that 𝜓(x, y)must be a harmonic function—that is, it must
obey Laplace’s equation. In the examples above, ky is a solution to Laplace’s equation and
ky2 is not.
You may have been wondering what all this is doing in a chapter on complex analysis,

and now we are finally ready to make the connection. Under the assumptions we started
with—divergenceless, irrotational, two dimensional fluid flow—we can find the stream func-
tion by solving Laplace’s equation, and then find the velocity field from the stream function.
Our strategy for finding harmonic functions is to treat the real plane as if it were the com-
plex plane. (This is why this technique is limited to two dimensions.) We carefully define
our boundary conditions. We choose an analytic function, knowing that both its real and
imaginary parts must be harmonic. There can be only one harmonic function that fits our
boundary conditions, and that is the stream function we’re looking for. We can then use
Equation 13.10.1 to find the velocity field.

EXAMPLE Return of the Rock in the Stream
We have now built up the tools to analyze the problem that began this section, the
stream flowing around a rock in Figure 13.18. We begin as always with our boundary
conditions. Since no water flows into or out of the rock, the circular boundary of the
rock must be a streamline. By symmetry, the x-axis (the real axis on our complex
plane) must also be a streamline. Finally, the water far away from the rock (in any
direction) has to look like uniform horizontal flow, which we calculated above as
𝜓 = ky.
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The streamlines of v⃗ are the contour lines of 𝜓 , so we need a function 𝜓(x, y) that is
constant on the real axis and on a circle of radius R centered on the origin. For
simplicity we can let that constant value be 0. (Remember that we can choose any
streamline we want as 𝜓 = 0.)
So we are looking for a real function 𝜓(x, y) that solves Laplace’s equation, and that

happens to be zero along the border of the rock and the real axis. The obvious
choice is 𝜓 = 0 (still water) but that does not meet our third boundary condition of
horizontal flow far away from the rock, so we have to find something else.
We will begin by choosing an analytic function f (z). Both its real and imaginary

parts will be harmonic functions, and we will choose one of them to be our 𝜓(x, y).
On our two contour lines we need f (z) to be a pure imaginary function (and then its
real part will be zero) or a pure real function (so its imaginary part is zero).
It’s easy to find analytic functions that are real on the real axis, as long as you avoid

logs and square roots. (For instance the function z2esin z is real everywhere on the real
axis—obvious when you think about it, isn’t it?) The hard part is finding a function
that is also real-valued on the edge of the rock.
The boundary of our rock is defined by |z| = R , which we can also write as zz∗ = R2,

so on this circle z∗ = R2∕z. And now comes a nifty trick: the sum of any function and
its complex conjugate is real, so f (z) = z + R2∕z is real on the boundary of the rock.
With a little algebra you can find that Im( f ) = y[1 − R2∕(x2 + y2)].
That’s almost the stream function we were looking for. It matches the right

boundary condition on the x-axis and the edge of the rock. We know Im( f ) is
harmonic because f (z) is analytic. (You might notice an exception at z = 0 but that
point does not concern us at all. Do you see why?) Finally, we need to get 𝜓 = ky far
away from the rock. To do that we simply multiply f by the constant k. (Take a
moment to convince yourself that this doesn’t mess up the other boundary
conditions or the fact that f is analytic.)

𝜓 = ky
(
1 − R2

x2 + y2

)
(13.10.3)

Finding 𝜓 is the hard part; from there it’s easy to find v⃗ if you want it.

v⃗(x, y) = 𝜕𝜓

𝜕y
î − 𝜕𝜓

𝜕x
ĵ = k

(
1 − R2

x2 − y2

(x2 + y2)2

)
î −

2kxyR2

(x2 + y2)2
ĵ

The resulting streamlines are the ones plotted in Figure 13.18. The streamline along
the x-axis simply arrives at the obstacle and stops. That streamline is the dividing
point between fluid that flows above and below the obstacle, and the point where it
reaches the obstacle is called the “stagnation point.”

Conformal Mapping and Inverse Problems

Hopefully you were able to follow everything we did in the previous examples, but you might
not have come up with the function f (z) = z + R2∕z on your own. Honestly, we probably
wouldn’t have either. As with electrostatics and steady-state temperature, however, once you
know the solutions to a few simple problems you can use conformal mapping to extend those
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to more complicated ones. And as in those cases, the most useful solutions often come from
applying a mapping to a solved problem and then figuring out what harder and hopefully
interesting problem you’ve just solved. In that spirit we end with the following example.

EXAMPLE Flow Around a Complicated Obstacle

Question: The figure below shows a horizontal flow in the upper half-plane going
around a semicircular obstacle. From our calculations above we know that the stream
function for this flow can be written as 𝜓(u, v) = v[1 − 1∕(u2 + v2)]. (We are using u
and v for our axes because we want to reserve x and y for the more complicated
scenario we are going to map this to, and we are setting k = 1 for simplicity.) Use the
mapping z(f ) =

√
f + 1 to map this to the stream function for flow around a

differently shaped obstacle.

–2 –1 1 2

2.0

1.5

1.0

u

v

Answer:

There are a number of ways to plot the mapped region. The brute force method is to
have a computer take a large array of points in the original region, apply the
mapping, and plot their new coordinates. In Problem 13.145 you’ll go through
analytic calculations to find the mapped region for this problem. Either way it ends
up looking like the figure below. The upper half-plane in uv space has mapped to the
first quadrant in xy space, and the semicircular obstacle has mapped to a
half-teardrop shape.
The process of finding the stream function 𝜓(x, y) is the same for any conformal

mapping problems.

1. Find the mapping from xy space to uv space. Since we were given the mapping the
other way we need to invert it, giving f (z) = z2 − 1.

2. Find the real and imaginary parts of the mapping. This just requires writing f = u +
iv and z = x + iy, which immediately gives u(x, y) = x2 − y2 − 1, v(x, y) = 2xy.

3. Plug u(x, y) and v(x, y) into the original stream function. This gives the final answer.

𝜓(x, y) = 2xy
[
1 − 1

(x2 − y2 − 1)2 + 4x2y2

]

The contour lines of this stream function are shown below. This represents flow
around a corner with an obstacle.
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This example may seem contrived, but the process it illustrates is useful for a variety
of problems. In Problem 13.136 you’ll use this method to find flow around a
corner without a strangely shaped obstacle. In Problem 13.146 you’ll use a similar
transformation to find the flow around a shape called an “airfoil,” which is used to
simulate flow around airplane wings.

Stepping Back

The techniques we’ve used in this section apply to divergenceless, irrotational, laminar fluid
flow in two dimensions. (“Laminar” means you can divide the flow into non-interacting
streamlines.) Even for that restricted class of flows, there are techniques well beyond what
we’ve covered in this section. In addition to the stream function𝜓(x, y) people often calculate
a “velocity potential” 𝜙(x, y) related to v⃗ by ∇⃗𝜙 = v⃗. The functions 𝜓 and 𝜙 are “harmonic
duals,” meaning they are the real and imaginary parts of an analytic function Ω = 𝜙 + i𝜓 ,
called the “complex potential” of the velocity field. Once you know 𝜓 or 𝜙 you can find the
other one, for example using the Cauchy-Riemann equations, and of course given either one
you can find v⃗. You can use techniques from electrostatics such as the “method of images”
to find potential functions for certain flows. Once you have solved a given problem you can
reverse the roles of 𝜓 and 𝜙 (since they are both harmonic) and have the solution to a dif-
ferent fluid flow problem. We don’t discuss those methods here, but this section should give
you a good introduction to techniques that can be used to solve for fluid flow in certain
circumstances.11

13.10.1 Problems: Fluid Flow

In all the problems in this section you should assume fluid flow is divergenceless and irrotational unless

otherwise specified.

13.134 In the ride “The Cyclone Zone”® at “Wet ’n
Wild”® water park in North Carolina riders
are carried around by water flowing in circles
in a doughnut shaped region between two

concentric circles of radius R1 and R2. Find a
stream function and velocity function for
the flow.

11For a longer discussion of the use of complex potentials for fluid flow see e.g. “Visual Complex Analysis” by Tristan
Needham, Clarendon Press, Oxford, 1997. Chapter 11 introduces the complex potential and Chapter 12, “Fluid
Flows and Harmonic Functions”…well, you can figure out what that discusses.
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13.135 In the Explanation (Section 13.10.1)
we solved for the flow around a circular
obstacle, assuming the x-axis was a stream-
line. If we drop that assumption then any
stream function that is constant on the
surface of that circle represents a possible
flow.
(a) What common analytic function has

a constant real part on a circle cen-
tered on the origin? Use your answer
to find a simple possible stream func-
tion around a circular obstacle.

(b) To get a more interesting stream func-
tion, add your answer to Part (a) to
the stream function we derived in the
Explanation. The result will be a new
stream function that is harmonic and
meets the right boundary conditions. For
simplicity you can take R = k = 1.

(c) Plot the contours of this new stream
function. How is this flow similar to
the one we derived in the Explana-
tion and how is it different?

The moral of this story is that the flow
around an obstacle can take many forms,
depending on the boundary conditions
away from the obstacle. That makes sense
physically; the same rock in different
streams will have different flows around
it. To determine the flow for a given phys-
ical situation you always need to specify
the boundary conditions. When we speci-
fied that the flow was horizontal and uni-
form far from the rock we were led to the
unique solution Equation 13.10.3.

13.136 In the boxed example on Page 11 we
found the stream function for flow around
a corner with an obstacle.
(a) Repeat the process to find the stream

function for flow around a corner
without the obstacle present.

(b) Sketch the contour lines of the stream
function (first quadrant only).

13.137 In the Explanation (Section 13.10.1) we
solved for flow bounded by the horizontal
axis and a circle centered on the origin.
(a) Use the mapping z(f ) = f 1∕3 to map

this stream function to a more com-
plicated flow problem.

(b) Find the velocity field v⃗(x, y).

(c) Sketch the region and the con-
tour lines of 𝜓(x, y).

(d) Sketch the region and the
vector field v⃗(x, y).

13.138 Horizontal flow in the upper half of the
uv-plane is described by the stream func-
tion 𝜓 = v, which is the imaginary part
of the analytic function f = u + iv. In this
problem you’re going to use the mapping
z(f ) =

√
f 2 − 1 to map this simple solu-

tion to a more interesting one.
(a) What region in the xy-plane is the

boundary v = 0 mapped to? In words,
what fluid flow problem are you solv-
ing with this mapping?

(b) Find the stream function 𝜓(x, y). The
following identity may help.

√
a + bi = 1√

2

√
a +

√
a2 + b2

+ i√
2

√
−a +

√
a2 + b2

(c) Plot contours of this new stream
function. This solution describes hori-
zontal flow around a boundary. Describe
the shape of that boundary.

13.139 In the Explanation (Section 13.10.1)
we solved for flow around a circular bar-
rier. Use the mapping z(f ) = (1∕2)(3f + 1∕f )
to map this problem to a more compli-
cated one. Sketch the mapped region,
find the mapped stream function, and
sketch its contours. Nothing in this problem
requires a computer, but the algebra and the
sketching are kind of ugly without one.

13.140 Assume a velocity field is irrotational
(∇⃗ × v⃗ = 0⃗) and prove that the stream
function 𝜓(x, y) is harmonic.

13.141 We defined the stream function 𝜓(z) as
the flux through a curve drawn from a
reference point z0 to the point z.
(a) Sketch a region with two points z0 and z

and draw two different curves connect-
ing them. Use the divergence theorem
to argue that the flux through the two
curves must be the same if ∇⃗ ⋅ v⃗ = 0
everywhere in the region, and will not
generally be the same otherwise.

(b) Suppose you have defined a stream func-
tion 𝜓(z) using a reference point z0, but
then you change your mind and decide
to define a new stream function 𝜒(z)
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using a different reference point z1. Write
an equation relating 𝜓(z) and 𝜒(z).

13.142 The Explanation (Section 13.10.1) described
the relationship between the stream function
𝜓 and the velocity field v⃗ in several ways that
are not obviously connected to each other.
In this problem you will draw the key con-
nection by starting with Equation 13.10.2
and proving Equation 13.10.1 (up to
the sign ambiguity mentioned in the
Explanation).

(a) Explain why ∇⃗𝜓 must be perpendicular
to v⃗.

(b) Next you need to relate the magnitude
of ∇⃗𝜓 to the magnitude of v⃗. Consider
two streamlines separated by a line seg-
ment of length ds. If the streamlines
are close enough, that line segment can
be perpendicular to both streamlines.
Let d𝜓 be the difference in the values
of 𝜓 between the two streamlines.
i. Express d𝜓 in terms of ds and
the magnitude of ∇⃗𝜓 .

ii. Express d𝜓 in terms of ds and
the magnitude of v⃗.

iii. How are the magnitudes of
∇⃗𝜓 and v⃗ related?

(c) Write a vector that is perpendicular
to ∇⃗𝜓 and has the same magnitude
as v⃗. Your answer should only contain
𝜓 , not v⃗. Hint: recall that two vectors
c⃗ î + dĵ and dî − cĵ are perpendicular to
each other.

13.143 Water is falling onto the middle of a cir-
cular table and flowing out to the edge at
radius R . One boundary condition is that
the streamlines must be normal to the edge
of the table. The other is that the stream-
lines must point directly outward from the
point at the center. (If that’s a “boundary
condition” then what is the “boundary”?
Imagine the water is coming straight out of
a small circular area of radius r in the center,
and then take the limit of your final answer
as r → 0.)

(a) Find a harmonic function that meets
these boundary conditions and thus
write the stream function for this
flow. Your answer should have one
undetermined constant in it.

(b) Find v⃗.
(c) Water has a density of 1 g/cm3. If the

layer of water on the table is 1 cm thick
then its mass per unit area on the table
is 1 g/cm2. Assuming water is being
added to the center at 5 kg/s, find the
constant in your expression for v⃗.

13.144 [This problem depends on Problem 13.143.] In
Problem 13.143 you found the fluid flow on
a circular table with a source at the center.
(a) Verify that this flow is divergenceless

everywhere except at the origin.
(b) Argue using the divergence theorem

that the divergence cannot be
zero at the origin.

Because the domain in which the flow is
divergenceless isn’t “simply connected”
(meaning there’s a hole in the middle
of it), the stream function is not single-
valued. To demonstrate this, consider the
points P = (1∕2, 0) and Q = (0, 1∕2).
(c) Draw an arc going counterclockwise from

P to Q . Find the flux through this arc.
(d) Draw an arc going clockwise from

P to Q . Find the flux through this arc.
(e) Take P as the reference point for the

stream function. Find 𝜓 if the curve
you draw from P to any point z is always
a combination of a counterclockwise
arc and a radial line segment.

(f) Using the same reference point, find 𝜓
assuming each curve is a combination of
a clockwise arc and a radial line segment.

(g) Show that these two stream functions
describe the same flow. (Your two
velocity functions may differ in sign
because of the direction ambiguity of
flux through a non-closed curve, but
they should otherwise be identical.)

13.145 In the boxed example on Page 11 we used
the mapping z(f ) =

√
f + 1 to map flow

in the upper half-plane around a semi-
circular obstacle to a more complicated
problem. In this problem you’ll work
out the mapping we used there.
(a) What region does the transformation

z = f + 1 map the upper half-plane to?
Hint: This is trivial if you think about it.
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(b) Now apply the transformation z =
√
f

to the region you found in Part (a) to
find the region that z =

√
f + 1 maps

the upper half-plane to. In answer-
ing this part you should assume you
are using the principal branch of
the square root function.

(c) The lower boundary of the semicir-
cle is the line segment from (−1, 0)
to (1, 0). What does this line seg-
ment get mapped to?

(d) The top boundary of the semicircle
satisfies u2 + v2 = 1. Using the formu-
las for u(x, y) and v(x, y) we derived in
the example, write an equation for the
curve in xy space that defines the upper
boundary of the new obstacle.

(e) Make a sketch of the curve you just
found. You can do this with a computer
or by hand, but if you do it by hand
explain how you know the basic shape.

13.146 Exploration: The Joukowski Airfoil

In the Explanation (Section 13.10.1) we
argued that the function z + R2∕z is real
on a circle of radius R centered on the
origin. An equivalent way of saying that
is that the mapping z(f ) = f + R2∕f maps
this circle to part of the x-axis. In 1908
Nikolai Joukowski applied this mapping to
circles with other centers and found that

they produced interesting shapes. You’ll
work with one such example here.
(a) Apply the mapping z = f + 1∕f to a

circle that passes through the point
f = −1 but is centered on f = .1 + .2i.
Plot the resulting shape. This shape is
called an “airfoil,” and is often used
to model airplane wings.12

(b) Invert the mapping to find f (z). You
should get two solutions. For now you’ll
just hold onto both of them.

For each of the two inverse functions f (z)
you found, have the computer define func-
tions u(x, y) and v(x, y) and use them to
define a function 𝜓(x, y). Don’t copy this
function down. You don’t even have to print
it on your screen. It’s pretty ugly.
(c) Make two plots showing the contours

of 𝜓(x, y) around the airfoil, one for
each stream function you defined.
You should find that each of them
fits around the airfoil perfectly in
some parts of the plot and not in
others.

(d) Define a new function equal to the
appropriate stream function in each
part of the domain. Plot the contours
of this piecewise function around the
airfoil to see the flow. You should be
able to see the stagnation point.

12See e.g. Theoretical Aerodynamics, 4th ed. by L. M. Milne-Thomson, Macmillan and Company, 1966.


