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Taylor Series and Series
Convergence (Online)

2.8 Asymptofic Expansions

In introductory calculus classes the statement “this series diverges” is generally taken to mean
“this series is useless.” But with asymptotic expansion we can sometimes use divergent series to
approximate functions.

2.8.1 Explanation: Asymptotic Expansions

On Page 70 we presented the following Taylor series.

SN S DAVSIP N DOSP -SSP
{I} =gt g = L A <x<h) (2.8.1) {I}

Equation 2.8.1 claims that the function on the left and the infinite series on the right are
“equal”—that is, the partial sums S,(x) are roughly equal to the function values f(x). This
approximation works best if n is very large and x is very close to 3. We can therefore make
this claim more specific in two ways.

1. Hold x constant and increase n. For instance if x = 3.1 then 1/(1 — 3.1) ~ —0.47619.

$,(3.1)=-1/2 =-05
$5(3.1) = —1/2+(0.1)/4 =-0.475
$5(3.1) = =1/2+ (0.1)/4 — (0.1)2/8 = —0.47625

First claim: Asn — o0, S,(3.1) — 1/(1 — 3.1). This claim holds, not only for x = 3.1, but
for any x-value between 1 and 5.
2. Hold n constant and let x approach 3. For instance, S, is the linear approximation

—1/2+ (x— 3)/4.

JAC)) =-0.333 So(4) =-0.25
f8.1) =-0.47619 S9(3.1)  =-0475
f(3.01) =-0.497512 S5(3.01) = -0.4975

Second claim: The closer x gets to 3, the closer S,(x) comes to 1/(1 —x). This claim
holds, not only for Sy(x), but for any partial sum in the series.

Take a moment to convince yourself that these two claims define our expectation for any
Taylor series, and that both are true for Equation 2.8.1.

For a divergent series the first claim above cannot possibly be true. (In the limit as n — oo
such a series does not approach anything.) In some such cases, however, the second claim still
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holds true; each partial sum makes a better and better approximation for a given function as
x gets closer to some designated value. Since most of our uses for power series involve using
finite partial sums as approximations, that claim is enough to make a power series useful
even if it will ultimately diverge.

The Asymptotic Expansion for the Complementary Error Function
As an example, consider the “complementary error function” erfc x.

_ 2 /°°
erfc x = —
Vr Jx

This function comes up in probability and statistics, and we discuss it in Chapter 11. For our
purpose here you only need to know three things about the complementary error function:
it is useful in many real-world situations, it is defined for all x-values, and it can be difficult
to calculate. It is therefore desirable to approximate its values with a series.

erfc x ~

Z( yn_(2mt (2.8.2)

ﬂx =0 nl(2x)2"

We will discuss below where that series comes from,
but first let’s see what it does. If you choose one
particular x-value and start accumulating terms you

N N A will find that the partial sums approach the desired
¢ vy value for a while and then move away from it.
For instance Figure 2.13 shows partial sums of this

series evaluated at x = 4. By the 10th partial sum

n the series gives a very good approximation of erfc

4, but some time after the 20th it begins to move
FIGURE 2.13 Partial sums of the asymptotic away.

erfc (4)

series for erfc x, evaluated at x = 4. You can see that this series does not ultimately

converge to erfc 4. In fact Equation 2.8.2 diverges
for any x-value you plug into it! (See Problem 2.183.) But you can also see that this series
does approximate erfc 4 well if you add up the right number of terms. (The optimal result
often comes from stopping after the smallest term—not a surprising result if you look at the
graph.)

Asymptotic Expansions

The above example shows that a divergent series can still be useful for estimating a function
value. But there are two other important points we need to make—about this example in
particular, and asymptotic expansions in general.

Suppose you choose a particular partial sum—the best one in our example above is the
15th. Now instead of an infinite series you have a finite series that can be used to accurately
approximate erfc 4. But that particular finite series makes an even better approximation
for erfc 5, and it’s spectacular for erfc 100. Every asymptotic expansion is built around a
particular value or (as in this case) around infinity, and the approximation works better as
you approach that value. Above we made two claims about Equation 2.8.1; here we are saying
that the second of these two claims also holds for Equation 2.8.2.

If that were the end of the story we could just work with the finite series and forget the
infinite divergent series that we started with. In practice we often do just that. But suppose
you use more terms: say, the 40th partial sum. We saw above that for x = 4 that makes a lousy
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approximation. But for sufficiently high x-values it makes a very good approximation—better
in fact than S;5. As x gets higher we can use more and more terms of the series.

In summary: when we claim that a series Za,,(x) asymptotically approaches a function f(x)
around x = x; we are saying the following two things. (Note that x, could be a finite number
or, as in the example above, infinity.)

1. Any given partial sum S,(x) can make an arbitrarily accurate approximation to f(x) by
allowing x to approach x,. (We say below how we are defining accuracy.)

2. As x gets closer to x, you can use higher partial sums before they start diverging away
from the correctvalue. This is a consequence of the first point, but we note it separately
because it is useful for understanding asymptotic series.

The definition below does not just reexpress the points we made above in more formal
language; it provides a specific requirement for how the partial sums must approach the
function.

Definition: Asymptotic Expansion

Let S be the series Y, a,(x) and let S, be the nth partial sum of S. We say § is an asymptotic expan-
sion of a function f(x) about the point x = x; if it obeys the following limit for any fixed, positive
integer n.

S-S,

lim ——— =0
=x o a,(x)

For a Taylor series that converges to a function we write f(x) = S. For a series that is divergent but
asymptotically approaches f(x) in the sense defined above, we write f(x) ~ S.

Deriving an Asymptotic Series
Equation 2.8.2 gives an asymptotic series for the complementary error function. Below we
start the process of deriving that formula. In the problems you will continue this process and
show why it gives us an asymptotic series.

Our strategy is use integration by parts to tackle the integral that defines the complemen-
tary error function.

2 [uv—/vdu] -2 I:—lg_ﬂ _1 %e‘ﬂdt]
\/; \/; 2t 2/ ¢ X

The uv term (before the integral) vanishes at ¢ = co so plugging in the limits of integration
gets us here.

—x2 oo
e 1 1 _pe

-— —e " dt (2.8.3)

\/;X \/;x t2

Equation 2.8.3 is not an approximation; it is an exact rewriting of the complementary error
function. The term before the integral represents the first term in the asymptotic series
expansion for erfc x. The integral itself represents the remainder—that is, the difference
between the actual function and the one-term series approximation.

erfc x =

&



4
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In Problem 2.189 you will take this process to the next step, finding subsequent terms in
the series and the integrals that represents their remainders. In Problem 2.190 you will use
the remainder terms to explain the behavior of this asymptotic series.

Prove that the asymptotic series for erfc x
given in Equation 2.8.2 is divergent
for any fixed value of x.

== Equation 2.8.2 gives a series expan-
sion for erfc x. Suppose you wish to use
this series to approximate erfc 3.

(a) Evaluate terms of this series expan-
sion at x = 3. You should see that the
terms decrease in magnitude for a
while and then increase. What term

has the smallest magnitude?

® 2.186

~

In Part (a) you found the n-value that
minimizes the magnitude of the terms

in this series. Make a graph of the par-
tial sums of this series as n goes from 0

up to twice that value. Include on your
graph a label showing the correct value of
erfc 3. Describe the behavior you see.

(c) How many terms of this series do

you need to obtain an approxima-

tion accurate to within 0.1%?

Repeat Parts (a)—(c) for erfc 5. How is the
behavior the same, and how is it different?

(d)

=] 2.187
== The “exponential integral” is defined

as Ei x = — /% (¢!/0)dt. The following
series converges to Ei x for all x # 0: Ei
x=y+In|x|+ XY x"/(nn!). Here y is
the “Euler—-Mascheroni constant,” roughly
equal to 0.5772. You can also represent
Ei x with the following asymptotic expan-
sion, valid in the limit x - —co.

oo
. e* n!
Eix~ — Z —
X =~ xll

You’ll use both of these series to
approximate Ei(—10).
(a) Prove that this asymptotic series

2.188

diverges for any value of x.

Calculate the value of Ei(—10) to at
least 5 decimal places.

(b

-~

(c

~

Calculate the 40" partial sum of
both series. Is either one a good
approximation?

d

~

Calculate the 30" partial sum of
both series. Is either one a good
approximation?

(e) Calculate the 3 partial sum of both series.
Is either one a good approximation?
(f) Plot the partial sums of both series up to
N =50 as a function of N (the maximum
value of n used in the partial sum). Show
on your plots the correct value of Ei(—10).
Describe how each series behaves.
(g) Why is it useful to have a divergent,
asymptotic expansion even though
there is a convergent series that
works for this function?

Suppose you use n terms of an infinite series
to approximate a value X. The “remainder”
is the difference between the actual value
and your approximation: R, = |X — S, |.

(a) Draw a graph of R, as a function of n for
a convergent Taylor series. (Although
the details vary from one convergent
Taylor series to the next, the overall
shape should be the same.)

(b) Draw a graph of R, as a function

of n for a divergent asymptotic

series. (Same comment.)

Consider the function f(x) = fxw et

(a) Use integration by parts to find
the first two terms of an asymptotic
series expansion for f(x). Express the
remainder as an integral.

*dt.

(b) For what values of x does your two-term
series best approximate f(x)? (Does it work
best for values of x close to zero, values of
x close to some other number, or values of

x approaching co?) How can you tell?

(c) == Use your two-term series to
approximate f(4), and compare it

to the actual value of f(4).

== The “error function” is defined

by the same integral as the comple-

mentary error function, but with dif-
ferent limits of integration.

Z / Py
\z Jo

The behavior and use of the error
function are discussed in Chapter 11.

erf x =
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Our purpose here is to approximate this func-
tion with two different series and compare
their behavior. It can be shown that erf x = 1—
erfc x, so its asymptotic expansion is

o

e 2!
\/;x ;( )n!(Qx)2"

(a) Write the Maclaurin series for ¢'. (You
can derive it or look it up.) From there
you should be able to easily generate
the Maclaurin series for ¢™*

erfx~1-—

* and from
there the error function. You should
not need a computer for this part,
although you can use one to check
your answer when you’re done.

You now have two different series that can

be used to estimate erf x. In the remain-

der of this problem you will compare
these two series using a computer.

(b) Use the n = 3 partial sum of each
series to estimate erf 1/2. Which esti-
mate is more accurate?

(c) Use the n = 3 partial sum of each
series to estimate erf 2. Which esti-
mate is more accurate?

(d) On one plot, show erf x and the n =3

partial sum of both series for 0 < x < 5.

Choose a vertical range that allows you

to see when each series is and isn’t a

good approximation to the function,

and estimate the ranges in which each
one gives a good estimate.

(e) One one plot, show the partial sums
of both series with x = 2 as a function
of N, the highest n-value of the partial
sums. Estimate the range of partial
sums for which each series gives a
good approximation to erf 2.

Equation 2.8.3 gives the first term in the

series expansion of erfc x.

(a) Use integration by parts on that series
to find the next term. Your final answer
will be in the form erfc x = <two terms
plus an integral>. Hint: You cannot inte-
grate ¢~ but you can integrate fe~"

(b) After n integrations the series looks like
X 5 @,(x) + R,. Assume the remain-
der term is given by the following inte-
gral with some coefficient ¢,.

= — 1
R, =c¢, / i dt
X

2.190
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Perform the next integration by
parts to find the term a,,, and the
remainder R, ;. You should verify that
the pattern continues because R,
looks like R, with n replaced by n + 1
and a different coefficient.
(c) Do one more integration by parts
to find a,,. (Don’t worry about the
remainder integral this time.) Sim-
plify the ratio |a,,o/a,.|.
Given a fixed value of x, for which val-
ues of nwill @,,,/a,., be greater than 1,
and for which will it be less than 1?

(d)

(e) Using your answer to Part (d), explain
why Figure 2.13 looks like it does. In
particular, explain how you can use
that answer to predict the value on
the horizontal axis at which the terms
switch from converging toward a finite
value to diverging away from it.

Your results in this problem demonstrate
that for any fixed x the asymptotic series
for erfc x should converge toward a finite
value for a while, and then start diverging
above a certain value of n. Problem 2.190 will
continue this argument by arguing that the
finite value the series converges to is in fact
erfc x.

—'.’l Exploration: The Remainder of the
Asymptotic Expansion for erfc [This prob-
lem depends on Problem 2.189.]
At any particular value of n, the asymptotic
series for erfc x looks like Y, a,(x) + R,
where R, is the exact difference between
the series expansion and the correct value
of erfc x. In this problem you’re going to
show that as n increases this remainder term
decreases for a while, indicating that the
series is getting closer to erfc x, but that it
starts to increase past a certain value of n.
In fact you’ll show that this is approximately
the same value of n at which the terms a,
go from decreasing to increasing.

In Problem 2.189 you showed
that if R, = ¢, [~ "¢ di then
Ry = —¢,[@Qn+1)/2] [Z @D dp,
The coefficient in front of the R, inte-
gral is bigger than the one in front of the
R, integral by a factor of (2n + 1)/2. At the
same time, however, the integrand decreased
by a factor of ¢%, and it’s harder to say what
effect that has on the entire integral. The
key to figuring that out is to notice that
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the decaying exponential causes the inte-
gral to be dominated by values of ¢ very
close to x.

(a) Numerically calculate f:o 2¢ dt and

f;o ~2¢" di for values of x ranging from

+.1

2 to 20. Show that for sufficiently large
x over 90% of the entire integral comes
from x < ¢ < x+.1. Estimate the low-
est value of x for which is true.

(b

~

Numerically calculate the ratio of
22 dt o [ e dt for val-
ues of x ranging from 2 to 20. On
the same plot, plot x2.

(c) What does dividing the integrand
by ¢? do to the value of the integral?
Explain how your answer follows
from the plots you made.

(d) Putting together your answers so far,

write a simple approximation for
R,.1/R,, valid for large x.

Using your answer to Part (d), estimate
the value of n at which the remain-
der term switches from decreasing to
increasing as you increase n. Check
your answer by verifying that it cor-
rectly predicts the appearance of
Figure 2.13.

Explain how the results you've derived
in this problem lead to the two proper-
ties that we said define an asymptotic
series. Hint: Remember that this inte-
gral represents the difference between
the original function and the nth
term of the asymptotic series!
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