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2.9 Additional Problems

2.191 The first two terms in the Taylor series for
a function f(x) make up the linear approx-
imation f(x, + Ax) ~ f(x,) + [ (x,)Ax.
(a) Under what circumstances would

this expression be exactly correct

for all values of Ax?

(b) When the linear approximation is
not exact the next order approxima-
tion is f(x) + Ax) & f(x)) + f'(x)Ax +
(1/2)f" (x,)Ax*. Explain why this next
term appears with a positive sign. In
other words, why is the linear approxi-
mation generally too low when /" (x,) > 0
and too high when /" (x,) < 0?

For Problems 2.192-2.200 find the fourth-order Taylor
series of the given function about the given point.

2.192
2.193
2.194
2.195
2.196

1/(1 + x)® about x = 0

x% 4+ ¢* about x = 0

tan (x*) about x =0

1/(sin x + cos x) about x = 0

" **+2 about x = 0. (Think about this one
for a moment before starting.)

In (xz) about x = 2

¢ about x = 1

1/(1 + tan x) about x = 7/2
1/(1 — x?) about x = —2

2.197
2.198
2.199
2.200

For Problems 2.201-2.204 find

the 15th-order Maclaurin series of the given function.
Hint: There’s an easy way and a hard way to do

each of these. We recommend you find the easy way.
2.201 sin (x*)

2.202 sin (x%) /x*

2.203 1In (5¢%)

2.204 P

! For Problems 2.205-2.208 use a computer to
calculate partial sums of the Taylor series for the
function about the midpoint of the domain. On one
plot, show the function in black and its partial sums
in different colors. You should show enough partial
sums to clearly see how they are changing as you add
more terms, and your final partial sum should match
the function well throughout the domain.

2.205 sinx, -b<x<5
2.206 ', —2<x<?
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2.207 ¢, 0<x<2
2.208 sin® x, —n/2<x<m

In Problems 2.209-2.213 you are given a non-linear
differential equation that, like most non-linear
differential equations, has no simple solution. For
each one replace the right-hand side of the equation
with a linear function that approximates it well under
the specified assumptions, and solve the resulting
approximate differential equation.

2.209 d*f/dx* =1—¢/. Assume you know that
f(x) is going to stay close to 0.

2.210

2.211

d?x/di® = —e*. Assume x(¢) stays close to x = 1.
d?x/di? = —In x. Assume x(¢) stays
close to x = 1.

2.212 dz/dt =1+ Inz Assume z(?) is close to z =2
for the period of time you are interested
in. Explain why this approximation can not
be used out to arbitrarily late times.

d*x/di> = —ksinh x. Assume x is the dis-
placement from equilibrium of a mass on

a non-ideal spring and that it is oscillat-
ing with a small amplitude. (If you don’t
know what sinh is see Appendix J.)

2.213

For Problems 2.214-2.224 show whether the given
series converges or diverges.
2214 Y™ n°
2215 Y™
2.216 Y 1/(1+n?)
2217 Y™ n/(1+n°)
2218 Y™ 1+n7°
2.219 Y™ (tanhn)/n (see Appendix J for tanh)
2.220 Y™ n/(1+n%)
2.221 Y™ (sinn)/(n!)
2.222 Y, 21(n—2)!/(n!)
2.223 Y™ e /n?
1

.224 _
2.22 nzlncos(ﬂn)

For Problems 2.225-2.232 determine the interval of
convergence of the given power series. (In other
words, for which x-values does this series

converge?)

2.225 E:":O x%"

2.226 Y x*"/(n!)

&
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2.227
2.228
2.229
2.230
2.231
2.232
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X yx+ D"/ (nh)

Y =D+ D" /(n)
Z:;O sin(zn/2)x"/(n!)
Do (e =1/ n?
=D (x = 1)/
Z:;O e "(x —2)"

Problems 2.233-2.237 deal with finding bounds on
the errors in series approximations. All of these
problems use the formulas for those errors given in
Appendix B.

2.233

2.234

2.235

2.236

2.237

Let f(x) = ¢* + ¢~ . Use a first-order Maclau-
rin series to estimate f(0.1). Use the
Lagrange remainder to place an upper
bound on the error of this approxima-
tion, and verify that the upper bound is
correct.

! Let f(x) = ¢* + . Use a 10th-order
Maclaurin series to estimate f(.8). Use the
Lagrange remainder to place an upper
bound on the error of this approxima-
tion, and verify that the upper bound is
correct.

(a) Use a third-order Maclaurin expan-
sion of sin x to estimate sin(1.5).

(b) Use a third-order Taylor series for sin x

around x = 7/2 to estimate sin(1.5).

(c) Which answer would you expect to

be more accurate? Why?

It

~

Use the Lagrange remainder to show
that the error in your second approxi-
mation must be less than 1.1 x 107,
Let f(x) = e7™.

(a) Find the third-order Maclaurin series
for f(x) and use it to estimate 02,

(b) Use the rule for errors in alternating

series to put an upper bound on the

error in this estimate. Verify that your
error is less than the upper bound.

(c) Use your series for ¢™ to estimate %2
Explain why you can’t use the same tech-
nique to put an upper bound on this
value. Instead, find an upper bound using
the Lagrange remainder. Express your
answer as a ratio of the possible error
in your estimate to the correct value
for 2.

Let f(x) = 1/(1 + x). Use a second-order

Maclaurin series to estimate f(0.1) and find

the bounds on that estimate using each of

the three methods described in Appendix B.

Verify that the actual error is lower than all
three bounds. Which technique gives you
the strictest bound? Which one is easiest
to find?

2.238

2.239

2.240

2.241

&

Does the series Z:;l (z/3)"sin (nz/2) /n!
converge or diverge? If it does converge,
what (exactly!) does it converge to?

The differential equation dx/dl = x + sin x +

cos x is non-linear and has no simple solution.

(a) Use a Maclaurin series to approximate
the right side of this equation with a lin-
ear function of x, valid when x = 0.

(b) Solve this approximate differen-

tial equation with the initial con-

dition x(0) = 0.

(c) Do you expect your approximation
to remain valid at late times? Explain,
using the solution you found.

—‘.’1 Plot the approximate solution
you found and the numerical solution
to the original differential equation,
from ¢ =0 to ¢t = 1. Does the behavior
match your prediction? Explain.

(d)

Use Maclaurin series to prove “Euler’s For-
mula” which states that, for any real number x,

e =cosx+isinx

where ¢ is an imaginary number, defined
by the property * = —1.

The picture below shows an “electric
dipole.” Two equal and opposite
charges sit on the x-axis.

-q q

-« >

(—d, 0) (d, 0)

The electric field on the x-axis due
to the presence of these two charges
is given by the equation

Eo kq kq
T (x—d)? (x+d)?

(x> d)

This is very similar to the equation from the
Motivating Exercise (Section 2.1), but in
this case we are interested in points on the
x-axis very far away from the crystal.

(a) Factor out kg/x* from the equation for
E. What you are left with should only
depend on the fraction d/x.

(b) If x> d then d/x is small and you can
expand the expression you just found
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2.242

2.243

2.244
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in a Maclaurin series for d/x. Find the
first two non-vanishing terms of this
expansion. (Hint: You can make this much
easier by using the binomial series.)

(c

~

Using your Maclaurin series, argue that
the electric field from a dipole drops off
proportionally to 1/x? at large distances.

&= Like r, ¢ is an irrational number that
has been calculated to large numbers of dig-
its. (As of late 2010 the first trillion digits
were known.) For this problem we’ll let you
get away with doing the first 10,000. Use the
Maclaurin series for ¢* with x =1 to find suc-
cessively better approximations of e. Keep
adding terms up to and including the first
term that is smaller than 1071%%%_ Give as your
final answer the 9997th through 10,000th dig-
its. (Count the initial 2 as the first digit.)

Two rods, each of length L and charge
per unit length 4, lie along the same line
with a distance D between them. The elec-
tric force between these rods is

By (L+ D)
= dze, "\ DQL+ D)

a D [ )
I L { f L {

(a) Rewrite this expression so L only appears
in the combination L/D.

(b) Use a Maclaurin series in L/D to find

an expression for the force valid when

you pull the rods very far apart com-

pared to their lengths. Keep only

the first non-zero term.

Rewrite 4 = Q/L where Q is the charge
on each rod and simplify your answer.
Explain why your answer makes phys-
ical sense in the limit D > L.

(c

~

The “MIDI tuning standard” assigns a “midi
note number” to each pitch: the note A440
is assigned p = 69, the Aff a half-step above it
is p = 70, and so on. This note number p is
related to the frequency f of the sound (in
Hz) by p = 69 + (12/1n 2) In(f /440). If a wind
instrument plays A440, however, the actual
frequency produced is 4404/ 7'/ T;), where T
is the temperature at which the instrument
is being played and 7j, is the temperature
at which the instrument was tuned.
(a) Write a first-order Taylor series for

p(T) about T' = T,.

2.245

2.246
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(b) The formulas above assume temperature
is measured in Kelvin. Suppose you tuned
your flute at a comfortable room temper-
ature of 290 K. Roughly how much would
the pitch rise per degree of increase in
T? Roughly how much would the tem-
perature have to rise in order to increase
your pitch from A to Aff? Use your Tay-
lor series to answer both questions.

The relationship between the vol-

ume, pressure, and temperature of a

gas can be written in the form PV =

nRT 1+ B(T)(n/V)+ C(T)(n/V)* + ...
where the coefficients B and C are called

the second and third “virial coefficients.”
(You may be familiar with the “ideal gas law”
that results from B(T) = C(T) = 0.) Calcu-
late the second and third virial coefficients
for the Van der Waals equation of state (P +
an®/V?)(V = nb) = nRT. Hint: Start by writing
the equation in the form PV = nRTf(n/V, T)
and then expand f in a Maclaurin series
inn/V.

Exploration: Simple Harmonic Oscillations.
Oscillations occur in a wide variety of situa-
tions, ranging from atoms vibrating around
their positions in a crystal to wrecking balls
swinging back and forth to giant waves mov-
ing up and down on the surface of stars.
In all of these situations there is an object
(the atom, the wrecking ball, the fluid on
the surface of the star, ...) that experiences
a force as a function of its position. In gen-
eral these forces can be very complicated
and can vary widely from one situation
to another. In many situations, however,
they can be well approximated by a simple
equation.
(a) Using Newton’s second law, write a dif-
ferential equation for the position x(¢) of
an object experiencing a force F(x).
(b) Any oscillator moves back and forth across
some equilibrium point. For simplicity you
can always define that equilibrium point
to be at x = 0, in which case it is natural to
expand [(x) in a Maclaurin series. Write
a second-order Maclaurin series for F(x)
and plug this into the equation you wrote
down in Part (a). The result should be
a differential equation with d?*x/dt* on
the left and three terms on the right.
(¢) The force on an oscillator is always zero
at the equilibrium point. Use that fact
to eliminate one of the terms from
your differential equation.
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(d) Explain why for small amplitude oscil-
lations one of the remaining terms will
be much larger than the other one.
Use that fact to eliminate one more
term from your equation.

~

(e) In order for an object to oscillate it must
have a “restoring force,” which means that
if x > 0 the force should be negative and if
x < 0 the force should be positive. Use that
fact to determine the sign of the constant
in the one remaining term on the right-
hand side of your differential equation.
(f) A simple harmonic oscillator is defined

by the differential equation

Ex_ o
e

where w is any (real) constant. Putting
together everything you’ve done so far
in this problem, explain why almost any
oscillator can be well approximated by

a simple harmonic oscillator for small
amplitude oscillations. Write an equation
for w that depends on F(x) and m.

~

How could you have an oscillator that
could not be well approximated by a sim-
ple harmonic oscillator for small ampli-
tudes? In other words, write a force F(x)
that would describe an oscillator that
would be an exception to the argument
you just presented. Note that the answer
is not to add damping because then the
force IF wouldn’t just be a function of x.

(g

2.247 Exploration: The Method of Power Series.

We have seen that Taylor series can be used
to help solve difficult differential equations
by simplifying complicated functions. Tay-
lor series can also be used in a more direct
way to solve differential equations. In the
“Method of Power Series” you assume a solu-
tion in the form of a power series and then
solve for the coefficients. (This technique

is explored further in Chapter 12.) In this
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problem you will solve d*y/dx® = —y with the

conditions y(0) = 0 and y'(0) = 1 by plugging

in the “guess” y = ¢, + ¢ x + ¥ + ¢x° + ...

(a) Plug the initial condition y(0) = 0 into
the “guess” and solve for .

(b) Take the derivative of both sides of the
guess and then use the initial condi-
tion y'(0) = 1 to solve for ¢.

(c) Now plug the guess into the differ-
ential equation you are solving. The
resulting equation will set two different
power series equal to each other.

(d) Your answer to Part (c) set two power
series equal to each other. For two
power series to be equal their constant
terms must be equal. Write the result-
ing equation and solve it for ¢,.

(e) Your answer to Part (c) set two power
series equal to each other. For two power
series to be equal their coefficients of
x must be equal. Write the resulting
equation and solve it for ¢;.

(f) Following a similar process, solve for
all coefficients up to ¢;. Then write the
solution to this differential equation as a
Maclaurin series up to the seventh power.

(g) What function has that particular
Maclaurin series? Does that function
solve the given differential equation
and initial conditions?

You probably knew the answer to that
problem before you started. Next you will
use the same technique to solve Airy’s
equation, which is used in optics to model
the intensity of a rainbow and in quantum
mechanics to represent a particle confined
within a triangular potential well.

2

(h) Solve d—xf = xy with conditions
3(0) = 1 and y'(0) = 0. Your solution
will be in the form of a Maclaurin
series up to the sixth power.



