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CHAPTER 3

Complex Numbers (Online)

3.6 Special Application: Electric Circuits
Figure 3.5 shows a circuit diagram with standard electrical symbols for a resistor, capacitor,
and inductor. A more complicated circuit might have hundreds of these elements, each with
a resistance R , a capacitance C , or an inductance L.

V C

R

L

FIGURE 3.5 A simple RLC circuit.

However simple or complicated the circuit, you
provide a “stimulus” (a voltage V (t) that might come
for instance from a battery or outlet) and the circuit
“response” is the resulting current I (t). When you ana-
lyze the circuit, you determine what response it will
have to a given stimulus.

In this section we will be looking at the response to a
sinusoidal stimulus V (t) = V0 sin(𝜔t). This is a particu-
larly important case because it models the voltage that
comes out of a typical household outlet. Furthermore,
more complicated functions can be built up as sums of
sine waves (Problems 3.127–3.128), so a solution for a
sinusoidal voltage turns out to be generally useful.

Before we go through the math, we’re going to jump to the end and present most of the
answer.

Response of an RLC circuit to a Sinusoidal Voltage

Given a voltage V (t) = V0 sin(𝜔t) the resulting current will be I (t) = I0 sin(𝜔t − 𝜙). That is, the
current will oscillate with the same frequency 𝜔 as the voltage. However, the current will lag behind
the voltage by a phase 𝜙.

The current can also be expressed as I (t) = A sin(𝜔t) + B cos(𝜔t) which may look like a
more familiar solution to a differential equation. But the form I (t) = I0 sin(𝜔t − 𝜙) is mathe-
matically equivalent (Problem 3.126) and lends itself to more direct physical interpretation.
It is important to note that the “phase lag”4 𝜙 is measured in radians, not in seconds. A phase
lag of zero means that the two oscillations are perfectly in sync; a phase lag of 𝜋∕2 means
that the current reaches its peak just as the voltage reaches zero.

In Figure 3.6, the period is 4 s (so 𝜔 = 2𝜋∕4). The current lags the voltage by 1∕3 of a
second, but it is more useful to view the lag as 𝜋∕6 radians or as 1∕12 of a cycle.

But how do we compute the amplitude I0 and phase lag 𝜙 of the response for any given
circuit layout? This is where complex numbers come in.

4also called the “phase shift” or “phase difference”.
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FIGURE 3.6 In this figure current lags voltage by 𝜋∕6
radians. (A positive phase lag means current is to the
right of voltage, so the voltage peaks first.)

The RLC circuit in Figure 3.5 comprises
each of the basic circuit elements. The volt-
age drop5 across a capacitor is proportional
to the built-up charge (V = Q∕C); the volt-
age drop across a resistor is proportional
to the current (V = IR or V = Q ′(t)R); the
voltage drop across an inductor is propor-
tional to dI∕dt (V = LI ′(t) or V = LQ ′′(t)).
If we set the total voltage drop equal to the
stimulus voltage V (t) we get a differential
equation for the charge Q . But it is prefer-
able to work with the current I (which is
easier to directly measure) so we take the
derivative of both sides.

LI ′′(t) + RI ′(t) + 1
C
I = V ′(t) (3.6.1)

If we let V (t) = V0 sin(𝜔t) and solve this differential equation we can find everything we need
to know about this particular circuit. But more complicated circuits have more complicated
differential equations. So here is the easier approach. Because V (t) is a sine, we can view it
as the imaginary part of a complex exponential function 𝐕. So Equation 3.6.1 becomes the
imaginary part of the complex equation

L𝐈′′(t) + R𝐈′(t) + 1
C
𝐈 = 𝐕′(t)

where 𝐕 = V0ei𝜔t . Since V = Im(𝐕) we know that the physical current I will be given by
I = Im(𝐈).6

This equation is much easier to solve. We begin by guessing a solution of the form
𝐈 = 𝐈𝟎ei𝜔t . (As we said above we are assuming that the current oscillates with the same
frequency as the voltage. Mathematically or physically it’s hard to imagine any other
behavior, but as always the guess will prove itself by working.) When we plug in this guess
and do a bit of algebra we end up here.

V0 =
(
R + i𝜔L − i

𝜔C

)
𝐈𝟎 (3.6.2)

The quantity in parentheses is called the “impedance” Z , a complex number that represents
the circuit layout of resistors, capacitors, and inductors. So the behavior of the circuit can be
captured in a very simple-looking equation reminiscent of Ohm’s law.

V0 = 𝐈𝟎Z (3.6.3)

Because V0 is real and Z is complex, we know that 𝐈𝟎 must also be complex.
Equations 3.6.1 and 3.6.3 represent two very different approaches to analyzing a circuit.
Without complex numbers every circuit element looks mathematically different, as we saw

before. A different arrangement of elements leads to a different differential equation, gen-
erally second order and not easy to solve.

5We use V for voltage; electrical engineers often use E .
6We could have considered a cosine for the potential and taken real parts instead of imaginary parts, but it’s more
common to use the imaginary part.
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With complex numbers we approach RLC circuits very similarly to how we approach cir-
cuits that have only resistors: find the total impedance of all the circuit elements and write
V0 = 𝐈𝟎Z . The resulting (complex) 𝐈𝟎 tells us the (real) amplitude and phase lag of the cur-
rent. Here are the steps we’ve left out of that brief description.

∙ How do you find the impedance? You can read the impedances of the individual
elements directly from Equation 3.6.2 as R , i𝜔L, and −i∕(𝜔C). We combine elements
just as we would combine resistors. Two elements “in series” (the current goes
through one and then the other) add their impedances, so Zseries = Z1 + Z2. Two
elements “in parallel” (the current goes through each element separately) add as

Zparallel =
1

(1∕Z1) + (1∕Z2)
.

∙ How do we find the amplitude of the current? Remember that 𝐈(t) = 𝐈𝟎ei𝜔t and as we
saw in Section 3.5 the amplitude of that function is the modulus of 𝐈𝟎.

∙ Finally, what about the phase lag? Recall that the voltage is the imaginary part of V0e
i𝜔t

and the current is the imaginary part of 𝐈𝟎ei𝜔t . The exponentials are identical in the two
expressions, so the phase difference between 𝐕 and 𝐈 is the phase difference between
V0 and 𝐈𝟎. But 𝐈𝟎 = V0∕Z . Remembering how numbers divide on the complex plane,
we conclude the phase lag is just the phase of Z .

The example below shows how we can predict the behavior of a circuit once all these pieces
are in place.

EXAMPLE A Complicated Circuit

Question: If the circuit shown below is driven by a voltage V = 3 sin(50t) find the
amplitude of the resulting steady-state current and find the phase lag between the
voltage and the current.

C = 10‒5 F

R1 = 500 Ω

R2 = 100 Ω

L = 10 H

V

Solution:

We can find the equivalent impedance of this circuit by considering it to be made of
two elements in series, the second of which is made up of two elements in parallel,
one of which is made of two elements in series. That sounds messy, but using the rules
for series and parallel circuit elements the total impedance is simply given by

Z = − i
𝜔C

+ 1
1

R1+i𝜔L
+ 1

R2
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Plugging in numbers gives Z = 400 − 1800i. Because 𝐈 = 𝐕∕Z the amplitude of the
current is given by |𝐕|∕|Z | = 3∕1844 = 1.6 × 10−3. The phase lag is the phase of Z ,
which in this case is tan−1(−1800∕400) = −1.4 rad, or about −80◦. That means the
current leads the voltage by almost a quarter cycle, so when the voltage is at its peak
the current has decreased nearly to zero.

And so what? If this circuit is part of an old-fashioned radio tuner, that might be
perfectly fine. But if the source of this circuit is the power company, that −80◦ phase
lag is a disaster; it means you are getting almost none of the power you’re paying for.
See Problem 3.125.

Note that the impedance of a resistor is just its resistance, but the impedance of an induc-
tor or capacitor depends on the frequency of the voltage source. Physically this corresponds
to the fact that a capacitor tends to impede low frequencies, an inductor impedes high fre-
quencies, and a resistor is an equal opportunity impediment. Mathematically it reminds
us that we are computing the response of a given circuit to a specific sinusoidal stimulus.
A more complicated stimulus can be represented as a combination of different-frequency
sine waves (a “Fourier series”); see Problems 3.127 and 3.128.

Stepping Back

We have arrived at a very general description of the “response” (the current) of a circuit to
a sinusoidal “stimulus” (voltage source). For a circuit with voltage source V = V0 sin(𝜔t), the
current will be I = I0 sin(𝜔t − 𝜙). To find the amplitude I0 and the phase lag 𝜙 of the circuit
response:

∙ Assign each circuit element an impedance of R , i𝜔L, or −i∕(𝜔C). Impedance repre-
sents how much a given element will obstruct the response of a circuit, but as you can
see this depends on the frequency. Inductors tend to block high frequencies, capacitors
block low frequencies, and resistors are equal opportunity obstructions.

∙ Add impedances in parallel or series using the same rules used for resistors to find the
total impedance Z of the circuit.

∙ The amplitude of the oscillating current is given by I0 = V0∕|Z |.
∙ The phase lag 𝜙 between voltage and current is the phase of Z .

The picture below shows the stimulus and response of a circuit with a phase lag of 𝜋∕6
or thereabouts. Don’t read anything into the relative lengths of the two lines, because
𝐕 and 𝐈 are measured in different units. What is important is that the two quantities will
rotate around the complex plane with the same frequency 𝜔 and therefore keep the same
phase lag between them. The real voltage and current are the imaginary parts of these
complex quantities, so they will also oscillate with a constant phase lag between them.

V I
Im

Re

When we draw 𝐕 and 𝐈 as points in the complex plane this way, those points are referred to
as “phasors” because they are like vectors that show the relative phases of the two oscillations.
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Frequently ei𝜔t is left out of the phasor, so the phasors for 𝐈 and 𝐕 show their initial positions
on the complex plane. It’s understood that the actual, time-dependent quantities rotate in
circles in the complex plane.

Note that our entire analysis is based on a particular solution to the differential equation.
There is also a complementary solution that contains arbitrary constants and depends on initial
conditions. In most cases, however, the complementary solution is “transient”—an exponen-
tial that quickly decays—leaving the particular solution as the “steady-state” or long-term
solution.

3.6.1 Problems: Electric Circuits

3.119 Walk-Through: Analyzing a Circuit. The
electric circuit shown below has voltage
V = 3 sin(500t), resistance 2000, capacitance
10−6, and inductance 15 (all measured in
SI units).

V C

R

L

(a) Find the equivalent impedance of the
resistor, capacitor, and inductor.

(b) Find the complex current 𝐈.
(c) Find the modulus of 𝐈 to get the ampli-

tude of the oscillating current.
(d) Find the phase lag between the oscil-

lating voltage and current by taking
the phase of the impedance.

(e) Sketch the (real) current as a func-
tion of time. Include numbers on
your plot that reflect the correct
amplitude and frequency of the oscil-
lation, and be sure to start at t = 0
with the correct phase. (Recall that
V is a sine function, so the phase lag
between V and I is minus the phase
of I .)

(f) How would your answers above change
if the voltage was V = 3 cos(500t)?

In Problems 3.120–3.122 find the impedance of the
indicated circuit and use that to find the amplitude
and phase lag of the resulting current.

3.120 V = 2 sin t, R1 = 50, R2 = 200, C = 10−6

C

R1

R2

V

3.121 V = 500 cos(400t), R = 5000, C1 = 3 ×
10−7, C2 = 10−6, L = 25

C1

C2R

L

V

3.122 V = sin(t∕10), R1 = 50, R2 = 100, R3 =
200, C = 10−7, L = 5.

R1

R2

R3

C

V

L
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3.123 In the circuit shown below R1 = 200Ω and
C = 4 × 10−8F . The resistor R2 is a “rheo-
stat,” a resistor that can be tuned to dif-
ferent resistance values. The voltage oscil-
lates at frequency 𝜔 = 120𝜋 sec−1.

C

R1

R2

V

(a) How much does the current lag
the voltage if R2 = 0?

(b) What happens to the phase lag as R2 → ∞?
(c) What value of R2 would you choose to

make the current lead the voltage by 𝜋∕4
(or, equivalently, lag the voltage by 7𝜋∕4)?

3.124 Suppose someone were to invent a device
called a “Feldor” whose voltage drop was
proportional to I ′′(t). The circuit shown
below would obey the differential equation
FI ′′′(t) + LI ′′(t) + RI ′(t) + (1∕C)I = V ′(t),
where F is the “Feldance” of the Feldor.
Find the impedance of a Feldor.

R

V

L

C

F

3.125 The Power Factor. The quantity VI (voltage
times current) measures the power being
delivered by a power source. When VI is neg-
ative power is actually being delivered to the
source. If positive power alternates perfectly
with negative power, the total “real power”
delivered from the source to the load is zero.
(a) Consider first a circuit with only

a power source and resistors: no
capacitors or inductors.
i. What is the phase lag of such a circuit?
ii. For what fraction of the time is

the power positive?
(b) Now consider a circuit with a phase

lag of 180◦. For what fraction of the
time is the power positive?

(c) Now consider a circuit with a phase
lag of 90◦. For what fraction of the
time is the power positive?

(d) The “power factor” of a circuit is a unitless
quantity defined as cos𝜙 where 𝜙 is the
phase lag. Based on your answers above,
describe the significance of the power
factor. Why does the power company
want this number to be as close to 1 as
possible?

(e) In a circuit with a low power factor
the energy is stored in the circuit and
then fed back into the source. Where
in the circuit (or “in what form”) is the
energy stored? (There are two impor-
tant answers to this question. Discuss
them both.)

3.126 Show that the differential equation solu-
tion I (t) = A sin(𝜔t) + B cos(𝜔t) (where A
and B are arbitrary constants) is equivalent
to the solution I (t) = I0 sin(𝜔t − 𝜙) by find-
ing I0 and 𝜙 in terms of A and B. You can
do this by looking up some trig identities,
or you can use complex exponentials.

3.127 Consider the circuit shown below.

V C

R

If the voltage source produces a voltage
like V = V0 sin(𝜔t) then you know by now
how to solve for the resulting current. In
this problem, however, you will consider a
voltage source V = V1 sin(𝜔1t) + V2 sin(𝜔2t),
and you’ll solve for the current using the
principle of linear superposition.
(a) Find the complex impedance of this cir-

cuit. (The answer will depend on 𝜔, the
frequency of the voltage source. Leave
𝜔 as a variable in this part; you’ll fill in
specific frequencies in the next parts.)

(b) Using the impedance you found
in Part (a), find the complex cur-
rent 𝐈 that would result from a volt-
age source V = V1 sin(𝜔1t).

(c) Using the impedance you found in
Part (a), find the complex current
𝐈 that would result from the volt-
age source V = V2 sin(𝜔2t).
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(d) Write the differential equation satis-
fied by 𝐈 and show that the sum of the
two currents you found is a solution
to this differential equation.

(e) Write your solution 𝐈(t) for R = 105Ω,
C = 10−6 F, V1 = 3 V, V2 = 5 V, 𝜔1 = 2 s−1,
and 𝜔2 = 3 s−1. Plot V (t) and the imag-
inary part of 𝐈(t) on the same plot.
Include a range of times sufficient to
see the behavior of the functions.

3.128 Exploration: Other Driving Functions

[This problem depends on Problem 3.127.]. The cir-
cuit from Problem 3.127, with the impedance
you calculated in Part 3.127(a), is driven by
a different voltage source. This source pro-
duces a “square wave”: V = 1 for 0 ≤ t < 1,
then V = −1 for 1 ≤ t < 2, and this pattern
repeats indefinitely with period 2. Such a func-
tion can be represented as a sum of an infinite
number of sine waves, a “Fourier sine series.”
Finding the coefficients is a topic for another
chapter, so here we just give them to you:

V (t) =
∞∑
n=1

4
n𝜋

sin(n𝜋t) (odd n only)

= 4
𝜋
sin(𝜋t) + 4

3𝜋
sin(3𝜋t) + 4

5𝜋
sin(5𝜋t) +…

(As in Problem 3.127, just leave the resistance
and capacitance as R and C until we tell you
to put in numbers. Leaving them as letters for
now will keep your equations more readable.)
(a) Plot the driving function V (t) from t = 0

to t = 6. On the same plot show the first
term of the series expansion: (4∕𝜋) sin(𝜋t).

(b) Make two more plots, each showing
the function V (t) and a partial sum of

its series expansion. On the first one
put the sum through n = 5. On the sec-
ond one put the sum through n = 101.
Describe what happens to the partial
sum as you include more terms.

(c) Write the complex solution 𝐈(t) that
you get if you replace the voltage V (t)
with the first term in its series expan-
sion (the n = 1 part of the series).

(d) Write the complex solution 𝐈(t) that
you get if you replace the voltage V (t)
with the sum of the first two non-zero
terms in its series expansion.

(e) Write the complex solution 𝐈(t) that you
get if you replace the voltage V (t) with
the sin(n𝜋t) term (not the partial sum up
to that term) of its series expansion.

(f) Write an infinite series for the solution
𝐈(t) that you get using the complete infi-
nite series expansion for V (t).

(g) Now let R = 105Ω and C = 10−6 F. Plot
the partial sums of Im(𝐈(t)) for n = 1,
n = 11, n = 21, n = 31, and n = 101,
five plots in all. (Remember to plot
partial sums, not individual terms.)
Each of your plots should go from t = 0
to t = 4.

(h) Describe the behavior of the n = 101
plot. What does the current do at t = 0?
What does it do shortly after that? What
does it do at t = 1, and shortly after that?
Describe what the capacitor is doing
physically to produce the behavior you
see. (If you skipped the computer part
you can still do this part by predicting
the behavior of I (t) based on what you
would expect the capacitor to do.)


