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4.10 Special Application: Thermodynamics
A sealed canister is filled with gas. A thermometer allows you to constantly monitor the tem-
perature of the gas, a manometer lets you monitor its pressure, and a heating coil allows
you to add controlled amounts of energy to it. In one experiment you tighten the lid of the
container and slowly add energy until the temperature of the gas has gone up by 5 K. You
record the amount of energy you added and the change in pressure that resulted. In a second
experiment the lid is a piston that can slide up or down freely, allowing the gas to expand
or contract. The piston is still sealed so no gas can enter or leave, and it’s insulated so the
only cooling or heating comes from the coil that you control. This time as you add energy
you find that the gas expands, pushing the piston up, and the pressure of the gas remains
constant. You also find that you need to add more energy to the gas to raise its temperature
by 5 K than you had needed when the lid was locked in place.

These experiments fall within the domain of “thermodynamics,” which deals with the flow
of energy between systems. It is one of the fields that most heavily uses partial derivatives and
differentials. In Problem 4.178 you’ll come back to these two experiments and calculate the
changes in pressure, volume and energy in both cases. In order to get there, you’ll need
some of the central formulas of thermodynamics:

1. The “first law of thermodynamics,” which can be rewritten as the “thermodynamic
identity,” addresses the ways in which energy transfers into and out of a system.

2. “Heat capacity” addresses the change in temperature that results from such a transfer
of energy.

The first law, and the application of heat capacity to a system, are universal. To figure out the
heat capacity of a specific system, you need more information about that system. This brings
us to our last topic:

3. The “ideal gas law” and “equipartition theorem” describe specific systems in enough
detail to allow you to figure out their heat capacities in many cases. Although these
laws are not universal, they apply in a broad variety of important real-world situations.

The First Law of Thermodynamics and the Thermodynamic Identity
A brick lying on the ground has an “internal energy” U due to the motions of its molecules
and the forces between them. A brick falling from a roof has a “total energy” E which is the
sum of internal, kinetic, and potential energies. In this section we will consider containers of
gas at rest. They may expand or contract, but they won’t move, so their only energy changes
will be in their internal energy. There are two ways a system’s environment can change the sys-
tem’s internal energy. Heat (Q) is the spontaneous transfer of energy from a hot object to a
cold object. Work (W ) is essentially any other transfer of energy, which can include mechan-
ical work (pushing or pulling the system), electrical work (running a current through it),
and more.5 The relationship between energy, heat, and work is expressed in the “first law of
thermodynamics”:

dU = Q +W the first law of thermodynamics (4.10.1)

We don’t usually set a differential equal to a normal quantity, but Q and W are not normal
variables. Q is the heat entering the system; it is not an energy, but the increase in energy due
to one specific cause. (Some texts use ΔQ and dQ for normal and infinitesimal flows of heat
respectively, but that seems to imply “a change in heat” which is not completely accurate;
rather, heat itself is a change in energy.) W is also a change, the energy added to the system

5We are assuming that each system maintains a constant number of particles, which rules out energy exchange by
direct transfer of particles from one system to another.
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due to all other causes. (Some texts define W as the work done by the system, and therefore
write dU = Q −W .) We will use Q and W without a prior Δ or d, and you will need to know
from context whether we are referring to a regular change in energy or an infinitesimal one.

In this section we will consider the relatively simple case of a gas in a closed container,
and we will only consider work done by compressing or expanding the gas. You will show
in Problem 4.189 that the work done on a gas when it is compressed by a small amount
dV is −P dV , where P is the pressure of the gas and V is its volume. The sign is negative
because positive work is done on the system when dV is negative. The heat entering a system
can similarly be written as T dS where T is the temperature and S is the “entropy.”6 That
expression can be derived from a more fundamental definition of entropy having to do with
the microscopic properties of the system, but for our purposes you can think of dS = Q∕T
as the definition of entropy. (It’s how entropy was first defined.) Putting all this together
gives the “thermodynamic identity,” which (among its other virtues) looks more like a good
equation with differentials should.

dU = T dS − P dV the thermodynamic identity (4.10.2)

Heat Capacity
When you add energy to a system you generally increase its temperature. The amount of
heat required per unit increase in temperature is the “heat capacity” (C) of the system. This
definition can be written as C = Q∕dT . Using dS = Q∕T (from above) we get:

C = T dS
dT

(4.10.3)

In this form, however, the definition of heat capacity is ambiguous because the entropy
depends on all three of the state variables T , P , and V . How fast entropy changes with respect
to temperature depends on what is happening to the other two variables at the same time.
The simplest possibility is to hold the volume constant (dV = 0), so Equation 4.10.2 becomes
dU = T dS. Putting that together with Equation 4.10.3 and the chain rule,

CV =
(
𝜕U
𝜕T

)
V

heat capacity at constant volume

Recall that the subscript V on this partial derivative means V is the variable you are holding
constant as you differentiate with respect to T . We’ll discuss this issue in more detail below.

Physically, this is the heat capacity of a system assuming there is no work being done on
or by the system (P dV = 0). While CV is relatively simple to calculate for many systems, it is
not usually the heat capacity of interest. That’s because when you heat something it tends
to expand, which causes it to do work on its environment: it is the pressure, rather than the
volume, that stays constant. Most tabulated values of heat capacity refer to “heat capacity at
constant pressure.” In Problem 4.198 you will show that

CP =
(
𝜕U
𝜕T

)
P
+ P

(
𝜕V
𝜕T

)
P

heat capacity at constant pressure (4.10.4)

Since some of the energy you put in as heat is going into work on the environment, the heat
you need to add to get a certain increase in temperature is greater, so CP is always larger
than CV .

6This section will contain many formulas with temperature in them. Those formulas only work if temperature is
measured in Kelvin, or some other scale where T = 0 means the absolute zero of temperature. If you think about
the familiar ideal gas law PV = nRT (which we discuss below), it should be clear that if a gas is at 0◦ Fahrenheit that
doesn’t mean P or V is zero. The ideal gas law, likemost thermodynamic formulas, simply isn’t true for temperatures
in Fahrenheit or Celsius.
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Ideal Gases
To make calculations about a particular fluid, you need to know the relationships between
properties such as pressure, volume, temperature, and energy. Different relationships lead
to different behavior. Here we address only one case, an “ideal gas.” But this case is not just
a textbook oversimplification: more complicated systems can often be approximated by the
ideal gas law in cases of low densities, such as the densities typically found at room tempera-
ture and pressure, so these equations serve as a useful model for most gases an engineer is
likely to encounter. You’ll consider some other systems in the problems.

We will need two equations to model an ideal gas. The first, the “equation of state,” relates
pressure, volume, and temperature:

PV = nRT the ideal gas equation

Here n is the number of moles (number of molecules divided by a constant called
“Avogadro’s number”) and R = 8.3 J/(mol K) is a constant.7

The second equation, which applies to ideal gases and a variety of other systems, relates
the internal energy to the temperature:

U =
f
2
nRT the equipartition theorem

Here f is the number of “degrees of freedom,” which essentially means how many ways the
molecules can move. A monatomic molecule such as helium has three degrees of freedom
because it can move in three independent directions. A diatomic molecule such as hydrogen
can also move in three directions, but in addition it can rotate around two independent axes,
so it has five degrees of freedom. (Technically you could consider other degrees of freedom
such as vibrations or rotations about the long axis of a diatomic molecule, but for quantum
mechanical reasons those motions cannot be excited at room temperature for most gases.)

The equation of state and the equipartition theorem allow you to predict measurable
quantities. For example, the heat capacity at constant volume of an ideal gas is

CV =
(
𝜕U
𝜕T

)
V
=

f
2
nR (4.10.5)

For a container with five moles of helium gas, CV is thus 20.8 J ∕K .

Another look at (𝜕f∕𝜕x)y
Throughout this section, and throughout thermodynamics more generally, frequent use is
made of the notation (𝜕f ∕𝜕x)y, meaning the partial derivative of f with respect to x, holding
y constant. To consider in more detail what such a derivative means, we turn briefly to a
non-thermodynamic example from basic Geometry.

The area of a right triangle can be written8 as A = (bc2 − b3)∕(2a), where a and b are the
legs and c is the hypotenuse. If the side lengths are changing, then the chain rule gives us
dA∕dt = (𝜕A∕𝜕a)(da∕dt) + (𝜕A∕𝜕b)(db∕dt) + (𝜕A∕𝜕c)(dc∕dt), which becomes:

dA
dt

=
(
−(bc2 − b3)

2a2

)(da
dt

)
+
(
c2 − 3b2

2a

)(db
dt

)
+
(bc
a

)(dc
dt

)
(4.10.6)

7Physicists often write the ideal gas equation in terms of the number of molecules rather than the number of moles:
PV = NkBT . “Boltzmann’s constant” kB is just R divided by Avogadro’s number.
8You can easily confirm this formula for yourself. Your next question might be “Who would write it that way, and
why?” We would, because we’re writing a math book. So there.
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We’re about to say some unflattering things about this equation, but first a word of reassur-
ance: if we tell you the side lengths of a right triangle and how fast those lengths are changing,
Equation 4.10.6 will correctly tell you how fast the area is growing. We are not about to take
back everything we’ve promised about the chain rule.

But we are about to point out that (𝜕A∕𝜕a) is a fictitious quantity.
You know by now that (𝜕A∕𝜕a) means “Find how much A changes if you change a while

holding b and c constant.” But you also know that you cannot possibly change a while holding
b and c constant! The three variables are related by the Pythagorean theorem: a2 + b2 = c2.
If you change one side, one or both of the others must change. (You can’t have a 3.01-4-5
right triangle.) So 𝜕A∕𝜕a is a useful quantity, as a step toward finding a total dA, but it is not
physically meaningful by itself. In fact, as you will show in Problem 4.191, different forms of
the area formula lead to completely different values for 𝜕A∕𝜕a.

EXAMPLE Same Partial Derivative, Different Answers

Question: The function f (x, y) = x + y is defined on the domain y = x. Find 𝜕f ∕𝜕x.

One solution:
If we take the function as given, f (x + y) = x + y, then clearly 𝜕f ∕𝜕x = 1.

Some other solutions:
Because this function is subject to a constraint, we can use the equation y = x to
rewrite the function. If we write it as f (x, y) = 2y then 𝜕f ∕𝜕x = 0. And if we rewrite it as
f (x, y) = 2x then 𝜕f ∕𝜕x = 2.
Why did we get three answers for one question? Because the question involves a useful

fiction. You cannot “change x while holding y constant” while also maintaining the
constraint y = x.
So why did you write a whole chapter about partial derivatives if they don’t mean anything?

Two reasons. First, sometimes they do mean something. If x and y were truly
independent, then 𝜕f ∕𝜕x would be a real and meaningful quantity. And as we will see
below, even when there is a constraint, we can frame partial derivatives in a perfectly
meaningful way by carefully specifying what stays constant and what doesn’t.

But the second reason is even more important: as we stressed above, the chain rule
still works! In this example, if you write df ∕dt = (𝜕f ∕𝜕x)(dx∕dt) + (𝜕f ∕𝜕y)(dy∕dt) you
will get the right answer, df ∕dt = 2(dx∕dt), no matter what form you use.

In short, there are two kinds of partial derivatives: the ones that are physically
meaningful (and have one unique answer), and the ones that are not physically
meaningful (and may have different answers). Both kinds can be used to find correct
total derivatives.

Thermodynamics is rife with constrainedmultivariate functions. For instance, 𝜕U ∕𝜕T falls
into the “useful but not physical” category because you can’t change T while holding P and
V constant. But we can get physically meaningful derivatives by specifying one variable to
hold constant, and allowing the others to change as they must. Consider how we can apply
this strategy to our triangle.

∙ 𝜕A∕𝜕a, as discussed above, means “see what happens to A if you change a while holding
b and c constant.” It can be a useful step on the road to finding a total dA, but it has no
intrinsicmeaning, and its value depends on the specific form of yourA(a, b, c) function.
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∙ (𝜕A∕𝜕a)b asks about the change in area if you change a while holding b constant. This
is real: the change in a causes a change in c, and the area of the triangle changes in
response to both of these changes. Mathematically, you would find this quantity by solv-
ing a2 + b2 = c2 for c and then plugging in to find A(a, b) = (1∕2)ab before evaluating
the partial derivative.

∙ (𝜕A∕𝜕a)c is also real: you change a while holding c constant, which causes a change in
b, and the area of the triangle changes in response to both of these changes. Mathe-
matically, you would find this quantity by solving a2 + b2 = c2 for b and then plugging
in to find A(a, c) = (1∕2)a

√
c2 − a2 before taking the derivative.

a aa

c c
c

b b

b

Change a while
holding b constant

Change a while
holding c constant

Please don’t think that we are saying “partial derivatives are physically meaningful only when
they have parentheses.” The message is quite different: “Partial derivatives are physically
meaningful when they represent a possible change.” For instance, if T (x, y, z) represents the
temperature in the room, then 𝜕T∕𝜕x (which implicitly means “holding y and z constant”)
is perfectly meaningful, since x, y, and z are all independent. But if our function is confined
to the plane 3x + 2y + 5z = 7 then a change in x must be accompanied by a change in either
y or z. In that case, 𝜕T∕𝜕x would be helpful only as part of a total dT , but (𝜕T∕𝜕x)y would
mean more than that.

Perhaps surprisingly, this distinction between “only useful” and “actually physical” partial
derivatives can be important in how you use them in equations. As an example, suppose that
three quantities E , F , and G are related by:

dE = dF + F dG given (4.10.7)

You can take this at face value as a statement about small changes: “If F and G each changes
by a small amount, then here is how much E will change.” If all three variables depend on
time, then you can also divide both sides by dt:

dE
dt

= dF
dt

+ F dG
dt

follows from Equation 4.10.7

This is now a statement about rates of change: “If F and G are changing this fast right now,
then here is how fast E is changing.”

But what if E , F , and G are all functions of x and y? Since we have stressed that dx
is a meaningful (and manipulable) variable and 𝜕x is not, you should be suspicious if we
assert this.

(
𝜕E
𝜕x

)
y
=
(
𝜕F
𝜕x

)
y
+ F

(
𝜕G
𝜕x

)
y

Does this follow from Equation 4.10.7? (4.10.8)

Does Equation 4.10.7 imply Equation 4.10.8? If x and y are independent, so all of these par-
tial derivatives have unique physical values, then the answer is yes. If x and y are related by
some external constraint, however, then you can change the values of these partials simply
by rewriting your functions as we did for 𝜕A∕𝜕a above, and Equation 4.10.8 doesn’t follow
from Equation 4.10.7. You’ll see an example where you are not allowed to do this division in
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Problem 4.196, and in Problem 4.198 you’ll apply a valid use of “dividing by 𝜕x” to derive an
important thermodynamic equation.

Thermodynamics makes frequent use of this notation and this trick, generally without
explanation. So let’s be clear: you cannot get from Equation 4.10.7 to Equation 4.10.8 by
“dividing both sides by 𝜕x” (there’s no such thing), or by taking derivatives with the chain
rule. You can’t get there by any mathematical step, because it is not always true. But if x and
y are independent of each other, then changing x while holding y constant will lead to real
values of dE , dF , and dG , and under those circumstances the leap to Equation 4.10.8 is safe.

4.10.1 Problems: Thermodynamics

4.178 A canister contains 5 moles of hydrogen gas at
300 K and 105 Pa (the SI unit of pressure). You
may consider the hydrogen to be an ideal gas.
(a) How much thermal energy does

the hydrogen contain?
(b) How much more thermal energy would

the hydrogen contain if it were at 350 K?
(c) Use Equation 4.10.5 to find CV for the

hydrogen and use that to calculate how
much heat you have to add to the gas to
raise it from 300 K to 350 K at constant
volume. Verify that your answer matches
the energy difference you found in
Part (b).

(d) How much would the pressure of
the gas increase as you heated it
at constant volume?

(e) Use Equation 4.10.4 to find CP
for the hydrogen.

(f) Use your answer to Part (e) to cal-
culate how much heat would be
required to raise the gas from 300 K
to 350 K at constant pressure.

(g) Use the first law of thermodynamics and
your answers to the previous parts to
calculate how much work is done on
or by the gas as you heat it from 300 K
to 350 K at constant pressure.

(h) Recall that we define W to be positive
when work is done on the system and
negative when it is done by the system.
Based on the sign you found for the work,
is work being done on the hydrogen by
its surroundings, or on the surround-
ings by the hydrogen? Based on that, is
the hydrogen gas expanding or contract-
ing as you heat it? (Hint: Don’t forget to
use common sense and experience. If
your answer to this question contradicts
what you would physically expect, go back
and see if you made a sign error.)

(i) Using W = −P dV , find the amount by
which the volume of the gas increased
or decreased as you heated it at a con-
stant pressure of 10−5 Pa.

4.179 (a) What is (𝜕U ∕𝜕V )S? (Hint: If you spend
more than 30 s on this problem you’re
making it harder than it needs to be.)

(b) Briefly describe an experiment you
could perform to vary V while hold-
ing S constant. Hint: look at the
definition of entropy.

4.180 For a system that obeys the equipartition
theorem we could have written the defi-
nition of CV as a total derivative, dU ∕dT .
Explain why this is equivalent to the def-
inition we gave for systems that obey
equipartition, but not necessarily for other
systems.

For Problems 4.181–4.185 you should assume all
gases are ideal. At normal temperatures and
pressures this is usually a good approximation. Pay
attention to how many degrees of freedom f the gas
in each problem has.

4.181 An “isothermal” process is one that takes
place at a constant temperature. Assume
a container with n moles of helium at vol-
ume V and pressure P is being expanded
isothermally at a rate dV ∕dt.
(a) At what rate is the internal energy

of the helium changing? (Hint: This
requires no calculations.)

(b) Using the thermodynamic identity and
your answer to Part (a), find the rate of
change of the helium’s entropy.

4.182 An “adiabatic” process is one in which no
heat enters or leaves the system. Assume
a container with n moles of helium at vol-
ume V and pressure P is being expanded
adiabatically at a rate dV ∕dt.
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(a) At what rate is the entropy of the
helium changing? (Hint: This
requires no calculations.)

(b) Using the thermodynamic identity and
your answer to Part (a), find the rate
of change of the helium’s energy.

(c) Is the helium’s temperature remaining
constant, increasing, or decreasing?

4.183 An “isobaric” process is one that takes place at
constant pressure. Assume a container with n
moles of helium at volume V and pressure P is
being expanded isobarically at a rate dV ∕dt.
(a) At what rate is the temperature of

the helium changing?
(b) At what rate is the energy of the

helium changing?
(c) Using the thermodynamic identity and

your answer to Part (b), find the rate of
change of the helium’s entropy.

(d) Is heat entering the system, leaving
the system, or neither?

4.184 A container with a movable piston that
can allow it to expand and contract con-
tains n moles of helium. The container
walls are thin enough that the helium
remains at a constant room temperature
T . You slowly compress the container so
that the volume goes from V0 to Vf .
(a) Write an expression for P (V ), the pres-

sure as a function of volume while the
helium is being compressed.

(b) Recall that a small amount of compression
−dV requires an amount of work −P dV
to be done on the system. To find the total
work done in going from V0 to Vf take
an integral to add up all the infinitesimal
amounts of work done along the way.

(c) Did the sign of your answer to
Part (b) come out the way you
would expect? Explain.

(d) How much did the energy of the helium
change during the process? (Hint: This
should be trivial to answer.)

(e) How much heat entered or left the
system during the process?

(f) Find the change in entropy of the
helium during the compression.

4.185 Methane is a “polyatomic” molecule, mean-
ing it has more than two atoms.
(a) A polyatomic molecule can rotate about

any of the three axes. How many degrees
of freedom f does it have?

(b) How much heat is required to raise
30 moles of methane gas from 300 K
to 350 K at constant pressure?

4.186 (a) What is CP for an ideal gas with f
degrees of freedom?

(b) Is the expression you just found
for CP larger than or smaller than
Equation 4.10.5 for CV ?

(c) Explain why your answer to Part (b)
makes sense physically.

4.187 The ideal gas approximation assumes that the
molecules of a gas don’t interact with each
other. At high densities, an approximation
that takes into account some molecular inter-
actions is the van der Waals equation of state:

PV + an2

V
− nbP − abn3

V 2
= nRT

The energy of a van der Waals gas is:

U =
fnRT
2

− an2

V

(a) Calculate CV for a van der Waals gas.
(b) From the energy equation you can

conclude that (𝜕U ∕𝜕T )P = fnR∕2 +
(an2∕V 2)(𝜕V ∕𝜕T )P . Use implicit differen-
tiation and the van der Waals equation of
state to find (𝜕V ∕𝜕T )P and thus derive an
expression for CP for a van der Waals gas.

4.188 Electromagnetic radiation can be considered
a gas of particles called “photons.” The gas is
ideal (not just approximately ideal, like nor-
mal gases), but instead of the usual equiparti-
tion theorem it obeys the relation U = 3nRT .
Derive CV and CP for n moles of photons.

4.189 Consider a container of gas with a mov-
able piston. Suppose the gas is allowed to
expand in such a way that the piston moves
by a distance L. As it expands the gas exerts
a force on the piston given by the pres-
sure P of the gas times the cross-sectional
area A of the piston. Recall from introduc-
tory mechanics that the mechanical work
you do on an object is the force you exert
on it times the distance it moves (assum-
ing they are in the same direction).
(a) Show that the work done by the gas

on the piston is P dV .
(b) Argue using Newton’s third law

that the work done by the piston
on the gas is −P dV .
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4.190 The Explanation above discussed the dif-
ferent meanings of 𝜕A∕𝜕a, (𝜕A∕𝜕a)b , and
(𝜕A∕𝜕a)c in a right triangle. Give a similar dis-
cussion of the different meanings of 𝜕S∕𝜕T ,
(𝜕S∕𝜕T )V , and (𝜕S∕𝜕T )P where S, the entropy,
depends on temperature, pressure, and vol-
ume, which are in turn constrained by an
equation of state such as the ideal gas law.

4.191 In the Explanation above, we analyzed a right
triangle using the admittedly perverse (but
correct!) area formula A = (bc2 − b3)∕(2a). In
this problem you will replicate our analysis
based on the more conventional A = (1∕2)ab.
(a) Find 𝜕A∕𝜕a, 𝜕A∕𝜕b, and 𝜕A∕𝜕c

and use them to write a general
expression for dA∕dt.

(b) Based on the Pythagorean c2 = a2 + b2,
write a formula for dc∕dt based on
a, b, c, da∕dt, and db∕dt.

(c) If a = 3, b = 4, c = 5, da∕dt = −2,
and db∕dt = 6, find dc∕dt.

(d) Plug the numbers from Part (c) into your
formula from Part (a). Show that your
𝜕A∕𝜕a is not the same as ours, but our
final dA∕dt answers are the same.

4.192 Consider the function f = x2 + yz
where 2x − yz2 = 3.
(a) Using the function in the form

given above, find 𝜕f ∕𝜕x.
(b) Rewrite f as a function of x and z

only. When you take the derivative of
the resulting equation with respect
to x, you will find (𝜕f ∕𝜕x)z .

(c) Find (𝜕f ∕𝜕x)y.
4.193 The entropy of a monatomic ideal

gas is S = C + nR ln(V ) + (3∕2)nR lnT
where C is a constant.
(a) Calculate (𝜕S∕𝜕T )V .
(b) Calculate (𝜕S∕𝜕T )P . (Hint: Start by

using the ideal gas law to eliminate
V from the equation for S.)

(c) Show that you can rewrite the
entropy of an ideal gas as either
C + nR ln ((1∕2)V + (1∕2)nRT∕P )
+ (3∕2)nR lnT or C + nR ln ((1∕3)V+
(2∕3)nRT∕P ) + (3∕2)nR lnT .

(d) Using the two expressions for entropy
in Part (c), calculate (𝜕S∕𝜕T ) hold-
ing P and V constant. Prove that your
two answers are not equivalent.

(e) We seem to have a problem. If you do an
experiment where you change T while
holding P and V constant, and measure

the resulting change in S, you cannot pos-
sibly get two different results. So how can
a series of valid mathematical steps lead
to two different values of 𝜕S∕𝜕T ?

4.194 A light bulb has a constant resistance R . A
battery supplies a voltage V across it, which
causes a current I = V ∕R to flow through it.
The power emitted by the light bulb (in the
form of light and heat) is P = IV . The voltage,
and thus the current, are changing with time.
(a) Draw the dependency tree for the

power in this arrangement.
(b) Write the chain rule for dP∕dt.
(c) Using the equations P = IV and

I = V ∕R , calculate dP∕dt as a func-
tion of V and dV ∕dt.

(d) Redo Parts (a)–(c) starting from the
equations P = I 2R and I = V ∕R .

(e) Note that 𝜕P∕𝜕I came out differently
in your two calculations, but in both
cases led to the same dP∕dt. Why must
dP∕dt come out the same no mat-
ter how you calculate it?

4.195 Consider a function f defined everywhere
on a plane. We use 𝜌 and 𝜙 for the polar
coordinates on the plane.
(a) The derivative (𝜕f ∕𝜕x)y looks for a change

in f when you advance x by a small
amount while holding y constant. Draw
a picture of a point (x, y). Then draw a
small line segment from that point that
allows x to change but holds y constant.
Label dx on your drawing.

(b) The derivative (𝜕f ∕𝜕x)𝜌 looks for a
change in f when you advance x by a
small amount while holding 𝜌 constant.
Draw a picture of a point (x, y) and a
small line segment from that point that
allows x to change but holds 𝜌 constant.
Label dx on your drawing.

(c) The derivative (𝜕f ∕𝜕x)𝜙 looks for a
change in f when you advance x by a
small amount while holding 𝜙 constant.
Draw a picture of a point (x, y) and a
small line segment from that point that
allows x to change but holds 𝜙 constant.
Label dx on your drawing.

Now we consider the specific function
f = y at the point (4, 3).
(d) Calculate (𝜕f ∕𝜕x)y at the given point.
(e) Rewrite f as a function of x and 𝜌.

Using this form, calculate (𝜕f ∕𝜕x)𝜌
at the given point.
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(f) Rewrite f as a function of x and 𝜙.
Using this form, calculate (𝜕f ∕𝜕x)𝜙
at the given point.

4.196 In this problem you will prove by example
that you cannot generally divide both
sides of an equation by 𝜕x when x and
y are not independent. Consider three
quantities f (x, y) = 3x2y + 2, a(x, y) = 2x4,
and b(x, y) = y2, where y = x2.
(a) Use the chain rule to calculate df ∕dx,

da∕dx, and db∕dx, and verify that
df ∕dx = da∕dx + db∕dx. Because these
are total derivatives you can multiply
both sides of the equation by dx and
conclude that df = da + db.

(b) Using the forms given in the prob-
lem for f , a, and b, show that the
equation (𝜕f ∕𝜕x) = (𝜕a∕𝜕x) + (𝜕b∕𝜕x)
is false.

4.197 Consider a function of x and y, which
are themselves related by y = x2.
(a) Let a1 = x + xy2.

i. Calculate 𝜕a1∕𝜕x and 𝜕a1∕𝜕y.
ii. Use the chain rule to write a formula

for da1 as a function of x, y, dx, and dy.
iii. Now plug in y = x2 to find da1 as

a function of x and dx only.
(b) Let a2 =

√
y + x3y.

i. Calculate 𝜕a2∕𝜕x and 𝜕a2∕𝜕y.
ii. Use the chain rule to write a formula

for da2 as a function of x, y, dx, and dy.
iii. Now plug in y = x2 to find

da2 as a function of x and
dx only.

(c) Show that a1 = a2. (Assume x > 0.)
(d) What was the same in these two examples,

and what was different?

4.198 (a) Derive Equation 4.10.4, starting from
the thermodynamic identity.

(b) Equation 4.10.4 looks like the ther-
modynamic identity divided by 𝜕T ,
but in general dividing by a par-
tial is not legal. Why is it OK in
this case?

4.199 The “enthalpy” H of a system is
defined as H = U + PV .

(a) Express the differential dH in terms
of T , S, P , and V and their differen-
tials. In other words write a formula
for dH without U in it.

(b) Using your formula for dH , show that
for any process done at constant pres-
sure the change in enthalpy equals
the amount of heat that enters your
system. (Many reactions occur at con-
stant pressure because they are open to
the atmosphere. Chemists often refer
to tables listing the enthalpy of gases
in different states to figure out how
much heat will enter or leave when
they undergo certain reactions.)

4.200 Maxwell Relations The thermodynamic iden-
tity can be used to derive non-obvious rela-
tionships between certain derivatives.
(a) What is

(
𝜕U
𝜕S

)
V

Hint: If you spend more than 30 s
on this problem you’re making it
harder than it needs to be.

(b) Take the derivative (𝜕∕𝜕V )S of your
answer to Part (a) to get an expression
for (𝜕2U ∕𝜕V 𝜕S). Your answer should be
in the form of a first derivative.

(c) Derive a similar expression for
(𝜕2U ∕𝜕S𝜕V ). Using the equality of mixed
partial derivatives, write an equation relat-
ing two first derivatives. This equation
is known as a “Maxwell relation.”

(d) Describe experiments that you could per-
form to directly measure each of the two
derivatives that you just said should be
equal to each other. When you think of
these derivatives as descriptions of physical
processes in this way it is far from obvious
that these two quantities would be equal.

4.201 [This problem depends on Problems 4.199 and
4.200.] Use the formula you derived for
dH in Problem 4.199 to derive another
Maxwell relation similar to the one you
derived in Problem 4.200.


