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CHAPTER 4

Partial Derivatives (Online)

4.7 Tangent Plane Approximations
and Power Series
It is often helpful to use a linear approximation to replace a complicated function f (x) with a
linear function that approximates f well when x is within a certain domain. If more accuracy
is needed Taylor series can give higher order polynomial approximations. Such approxima-
tions were the main focus of Chapter 2.

In this section we apply a similar technique to multivariate functions, finding first a linear
approximation (a plane), and then extending it to higher order terms.

4.7.1 Discovery Exercise: Tangent Plane Approximation

The drawing shows a function z = f (x, y). Our goal is to find a plane that will approximate
this function near the point (x0, y0, z0): a tangent plane to the surface. The drawing does not
show the tangent plane, but it does show two tangent lines at that point, one with a constant
x and one with a constant y.

x

y

x = x0

z

y = y0
(x0, y0)

1. For a given function f (x, y), how would we find the slope of the line labeled y = y0?
(Remember that this is the slope of the function in the x-direction, holding y
constant.)

2. How would we find the slope of the line labeled x = x0?
3. Recall that we are looking for a plane that we can use to approximate f . The equation

for a plane can be written in the form z = a(x − x0) + b(y − y0) + c. Use this equation
to answer the following questions:
(a) At the point (x0, y0), what is the value of z?
(b) What is the slope of z at that point as you move in the x-direction?
(c) What is the slope of z at that point in the y-direction?

1



7in x 10in Felder c04_online.tex V3 - January 21, 2015 9:44 A.M. Page 2

2 Chapter 4 Partial Derivatives (Online)

4. Find the values of a, b, and c for which the plane z(x, y) has the same value, slope in
the x-direction, and slope in the y-direction as f (x, y) at the point (x0, y0).
See Check Yourself #24 in Appendix L

5. Once we have made the proper choice, will our plane also match the slopes of the
original function in all other directions at that point? How do you know?

4.7.2 Explanation: Tangent Plane Approximations
and Power Series

In Chapter 2 we found the tangent line to a curve at a given point. That’s not a useless
geometric exercise: the tangent line is useful because it serves as a linear approximation to the
original function, and we can solve many important problems for linear functions that we
cannot solve for more complicated functions. If a linear approximation is not sufficient, we
can add more terms—a Taylor series—creating a higher order polynomial to approximate
the function as accurately as necessary.

In this section we extend these ideas to multivariate functions. Our initial goal is to find
the tangent plane to a surface. Once again, the real purpose of this exercise is to approximate
a complicated function with something easier to work with. And once again, we will end with
a formula that can be used to extend the approximation to higher order terms if necessary.

A Formula for the Tangent Plane

What is the definition of a tangent line to a curve? What makes it… tangent? Our answer is
that the tangent line and the curve share a point, and they share the same derivative at that
point. Based on that definition we can arrive quickly at a formula: the tangent line to y = f (x)
at the point (x0, y0) is y = y0 + f ′(x0)(x − x0). The tangent line works as a good approximation
to the original curve for values close to x0 because both functions start at the same y-value
and move up (or down) from there at the same rate.

A similar argument applies in higher dimensions. We begin with a definition: a tangent
plane to the surface z = f (x, y) at the point (x0, y0, z0)must contain that point, andmustmatch
the original function at that point in both its partial derivatives. If the two functions share
both their partial derivatives, then all their directional derivatives will be the same at that
point. (Remember that Du⃗f = ∇⃗f ⋅ u⃗ and ∇⃗f =

(
𝜕f ∕𝜕x

)
î +

(
𝜕f ∕𝜕y

)
ĵ.) Such a plane works

as a good approximation for the original surface for points close to (x0, y0) because both
functions start at the same z-value and, no matter which direction you travel in, they move
up (or down) from there at the same rate.

x

y

x = x0

z

y = y0
(x0, y0)

These considerations are enough to arrive at a formula.
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The Tangent Plane to a Surface

Given a surface S defined by a function z = f (x, y) that is differentiable at the point (x0, y0), the
tangent plane to S at (x0, y0) is given by the following formula.

z = f (x0, y0) +
(
𝜕f
𝜕x

(x0, y0)
)
(x − x0) +

(
𝜕f
𝜕y

(x0, y0)
)
(y − y0) (4.7.1)

We present this formula with no derivation, although you may have arrived at something
similar on your own if you worked through the Discovery Exercise (Section 4.7.1). As always,
however, you shouldn’t take our word for it. Convince yourself of the following facts.

∙ Equation 4.7.1 does in fact define a plane. (There are of course rigorous ways to prove
this but you can see it intuitively by considering some possible values for the constants
in the formula, which is everything on the right-hand side except x and y, and seeing
what the function looks like.)

∙ The plane and the original function f (x, y) intersect—have the same z-value—at (x0, y0).
∙ At that point, the plane and the original function also have the same 𝜕z∕𝜕x and the

same 𝜕z∕𝜕y.

If those conditions are satisfied, then we have found the tangent plane we are looking for.

EXAMPLE Tangent Plane

Problem:

Find the tangent plane to the function f (x, y) = 3y + ln(2x + y) at the point (0, 1), and
use it to approximate f (0.1, 0.96).

Solution:

f (0, 1) = 3.
𝜕f ∕𝜕x = 2∕(2x + y), so 𝜕f ∕𝜕x(0, 1) = 2.
𝜕f ∕𝜕y = 3 + 1∕(2x + y), so 𝜕f ∕𝜕y(0, 1) = 4.
The formula for the tangent plane is therefore z = 3 + 2x + 4(y − 1).
This formula gives f (0.1, 0.96) ≈ 3.04. (The actual value is roughly 3.03.)

If a function depends on more than two variables, add a term for each variable. For
example, the linear approximation to a function f (x, y, z) about the point (x0, y0, z0) is given
by

f (x0, y0, z0) +
(
𝜕f
𝜕x

(x0, y0, z0)
)
(x − x0) +

(
𝜕f
𝜕y

(x0, y0, z0)
)
(y − y0) +

(
𝜕f
𝜕z

(x0, y0, z0)
)
(z − z0)

Linearizing Higher Order Differential Equations

As with single-variable linear approximations, one of themost important applications of mul-
tivariate linear approximations is to turn non-linear (and unsolvable) differential equations
into linear ones that can actually be solved. Inmany cases the “variables” in the linear approx-
imation are the dependent variable in the problem and its derivative(s).
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EXAMPLE Linearizing a Differential Equation

Problem:

Find and solve a linear approximation to the differential equation

ẍ = 1 − e3x+4ẋ

(Recall that ẋ means the derivative of x with respect to time.)

Solution:

The problem presents us with a function ẍ(x, ẋ). If x and ẋ are small then we can
replace this function with a linear approximation around (0, 0). Note how the
following numbers all come directly from the differential equation itself.

ẍ(0, 0) = 0, (𝜕ẍ∕𝜕x)(0, 0) = −3, and (𝜕ẍ∕𝜕ẋ)(0, 0) = −4, so 1 − e3x+4ẋ ≈ 0 − 3x − 4ẋ.

The equation ẍ = −4ẋ − 3x can be solved by guessing an exponential solution, which
leads to x(t) = Ae−3t + Be−t . Of course, it’s important to remember that this solution is
only useful for small values of both x and ẋ! Fortunately this solution shows that if x
and ẋ start out small they will remain so since they will decay exponentially.

Higher Order Terms

A Taylor series begins with a linear approximation but adds higher order terms to match
the second, third, and higher order derivatives of the function, providing a more accurate
estimation tool. You can expand a function f (x) into a Taylor series around the value x = x0
with the formula:3

f (x) =
∞∑
n=0

(
dnf
dxn

(x0)
)

1
n!

(x − x0)n

= f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)2 +

f ′′′(x0)
6

(x − x0)3 +…

If you want to find the third-order term in the expansion of
√
x around x = 25, this formula

tells you to evaluate the third derivative of
√
x at x = 25 and divide it by 3!, and that gives

you the coefficient of (x − 25)3. In this fashion you can build a third-order polynomial that
matches the original function’s y-value and its first three derivatives at x = x0. Note that the
“0th derivative” of a function f (x) is defined to be the function f (x) itself (and recall that
0! = 1), so the first term in this series is f (x0) as shown above.

The formula for a multivariate Taylor series looks similar.

The Taylor Series for a Multivariate Function

If a function f (x, y) can be expanded into a polynomial around the point (x0, y0), then the formula
is given by:

f (x, y) =
∞∑
n=0

∞∑
m=0

(
𝜕n+mf
𝜕xn𝜕ym

(x0, y0)
)

1
n!m!

(x − x0)n(y − y0)m (4.7.2)

To compute a Taylor polynomial of order 5, you write out all the terms for which n + m ≤ 5.
(The extension of this formula to functions of more than two variables is straightforward; see

Problem 4.123.)

3Some people write the first term separately and start the series at n = 1, which avoids 00 appearing in the first term
for x = x0.
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In Problem 4.122 you will show that this formula makes a logical extension of our
tangent plane. It reduces to Equation 4.7.1 in the case of a first-order approximation. For
a second-order approximation, it matches the function f (x, y) at the point (x0, y0) with the
same z-value, the same (two) first derivatives, and the same (three) second derivatives.
A third-order approximation matches all those plus all four third derivatives, and so on. In
Problem 4.114 you’ll go through part of the argument for why these requirements lead to
this particular formula.

EXAMPLE Multivariate Taylor Series

Problem:

Find the second-order approximation to the function z = 3y + ln(2x + y) at the point
(0, 1), and use it to approximate z(0.1, 0.96).

Solution:

First calculate the relevant derivatives, remembering that the 0th derivative is just the
function itself.

𝜕0z
𝜕x0𝜕y0

= z(x, y) = 3y + ln(2x + y) so 𝜕0z
𝜕x0𝜕y0

(0, 1) = 3

𝜕1z
𝜕x1𝜕y0

= 𝜕z
𝜕x

= 2
2x + y

so 𝜕1z
𝜕x1𝜕y0

(0, 1) = 2

𝜕1z
𝜕x0𝜕y1

= 𝜕z
𝜕y

= 3 + 1
2x + y

so 𝜕1z
𝜕x0𝜕y1

(0, 1) = 4

𝜕2z
𝜕x2𝜕y0

= 𝜕2z
𝜕x2

= −4∕(2x + y)2 so 𝜕2z
𝜕x2𝜕y0

(0, 1) = −4

𝜕2z
𝜕x0𝜕y2

= 𝜕2z
𝜕y2

= −1∕(2x + y)2 so 𝜕2z
𝜕x0𝜕y2

(0, 1) = −1

𝜕2z
𝜕x1𝜕y1

= 𝜕2z
𝜕x𝜕y

= −2∕(2x + y)2 so 𝜕2z
𝜕x1𝜕y1

(0, 1) = −2

Plug this into the formula for a second-order Taylor series.

z(x, y) = 3 + 2x + 4(y − 1) − 2x2 − (1∕2)(y − 1)2 − 2x(y − 1)

This formula puts z(0.1, 0.96) at 3.027. (The actual value is roughly 3.028.)

As with Taylor series for one variable, you can find Taylor series for multivariate func-
tions by multiplying other Taylor series, differentiating or integrating other Taylor series, or
plugging in combinations of variables into them. This is shown in the example below and
explored further in the problems.
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EXAMPLE Building a Complicated Taylor Series
from Simpler Ones

Problem:

Find the second-order Maclaurin series for f (x, y) = ex sin(x + y).

Solution:

We can find the Maclaurin series for sin(x + y) by plugging x + y into the series for sin:

sin(x + y) = (x + y) −
(x + y)3

6
+…

Next we multiply this by the Maclaurin series for ex , being careful to keep all terms up
to the second order.

f (x, y) =
[
1 + x + x2

2
+ x3

6
+…

] [
(x + y) −

(x + y)3

6
+…

]
≈ x + y + x2 + xy

You’ll show in Problem 4.124 that you get the same answer using Equation 4.7.2.

4.7.3 Problems: Tangent Plane Approximations
and Power Series

4.111 Let f (x, y) =
√
x + y2, and let g (x, y) be the

tangent plane to f (x, y) at the point (40, 3).
(a) Find the formula for g (x, y).
(b) Show that f (40, 3) = g (40, 3) and

∇⃗f (40, 3) = ∇⃗g (40, 3).
(c) Calculate f (41, 2.9) and g (41, 2.9).
(d) Calculate f (50, 5) and g (50, 5).
(e) In which case, Part (c) or (d), did

g (x, y) serve as a better approxima-
tion of f (x, y)? Why?

4.112 [This problem depends on Problem 4.111.] Let
h(x, y) be the second-order Taylor approxima-
tion to the function f (x, y) at the point (40, 3).
(a) Find the formula for h(x, y).
(b) Show that at the point (40, 3), 𝜕2f ∕𝜕x2 =

𝜕2h∕𝜕x2 and 𝜕2f ∕𝜕x 𝜕y = 𝜕2h∕𝜕x 𝜕y
and 𝜕2f ∕𝜕y2 = 𝜕2h∕𝜕y2.

(c) Calculate h(41, 2.9) and h(43, 2.5).
(d) At both points, did g or h work bet-

ter as an approximation for f ?

4.113 One term in the Taylor series for a func-
tion f (x, y) around (0, 0) is(

𝜕5f
𝜕x2𝜕y3

(0, 0)
)

1
2! × 3!

x2y3

(a) Write down the term involving x7 and y4.
(b) Write down the term involving the same

powers in a Taylor series around (−3, 𝜋).
4.114 One term in the Taylor series for a

function f (x, y) around (0, 0) is C23x
2y3

where C23 is a constant.
(a) Find d2∕dx2 of this term evaluated at (0, 0).
(b) Find d3∕dx3 of this term evaluated at (0, 0).
(c) Find d2∕(dx dy) of this term eval-

uated at (0, 0).
(d) Find d6∕(dx3dy3) of this term eval-

uated at (0, 0).
(e) We just asked you four different

questions—four different derivatives
of this function, all evaluated at (0, 0).
Write down and answer another such
question. Your answer should not be
zero. (Hint: there is only one correct
question you can ask here!)

(f) The Taylor series and the function f (x, y)
should give the same answer for the
derivative you wrote in Part (e). What
value of C23 accomplishes this goal?

4.115 Find the tangent plane approximation
to the function f (x, y) = sin(2x) cos(3y)
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at the point (𝜋∕6, 𝜋∕6) and use it to
approximate f (1∕2, 1∕2).

4.116 Find the second-order approximation
to the function f (x, y) = sin(2x) cos(3y)
at the point (𝜋∕6, 𝜋∕6) and use it to
approximate f (1∕2, 1∕2).

4.117 Find the tangent plane approximation to the
function z = x∕y at the point (6, 2, 3).

4.118 Find the second-order approximation to the
function z = x∕y at the point (6, 2, 3).

4.119 Find the fourth-order Taylor series approx-
imation for sin(x + y2) around (0, 0).
(Hint: There’s a quick and easy way to
do this. Just be sure that you toss out all
terms above the fourth order.)

4.120 It is possible to do this entire problem
without using Equation 4.7.2. (The sec-
ond part can come quickly from the first,
and the third from the second.)
(a) Find the third-order Taylor series approx-

imation for sin(x + y) around (0, 0).
(b) Find the third-order Taylor series approx-

imation for sin(x + y) around (0, 𝜋).
(c) Find the second-order Taylor series

approximation for cos(x + y) around (0, 𝜋).
4.121 (a) Find the third-order Taylor series approx-

imation for ex+2y around (0, 0).
(b) Take 𝜕∕𝜕x of your answer to part

(a). The result is the second-order
Taylor series approximation for what
function?

(c) Take 𝜕∕𝜕y of your answer to part (a). The
result is the second-order Taylor series
approximation for what function?

4.122 Write all the terms of Equation 4.7.2 for
which n + m ≤ 1—in other words a first-order
series. Show that this results in Equation 4.7.1,
the tangent plane approximation.

4.123 Equation 4.7.2 gives the formula for the Taylor
series of a function of two variables f (x, y).
(a) By extending this formula, write the

formula for a Taylor series of a three-
variable function: f (x, y, z) = ….

(b) Use your formula to calculate the first-
order- and second-order Maclaurin series
for the function f (x, y, z) = x2 + ye5z .

(c) Use your first-order- and second-
order expansions to approximate
f (0.01, 0.02,−0.01). As a check on your
formula, your answers should both
be close to the correct value and your
second-order one should be closer
than the first-order one.

4.124 Find the second-order Maclaurin series
for f (x, y) = ex sin(x + y) by plugging it into
Equation 4.7.2 and verify that you get the
same answer we derived for it by easier meth-
ods in the Explanation (Section 4.7.2).

4.125 Suppose an object A is moving with a velocity
vAB relative to an object B, and B is moving
with a velocity vBC (in the same direction)
relative to an object C. According to special
relativity, the velocity of A with respect to C is:

vAC =
vBC + vAB

1 + vBCvAB∕c2

where c, the speed of light, is a constant.
(a) Find the linear approximation to

vAC when both velocities are much
smaller than c. Explain why your
answer makes sense physically.

(b) Find the second-order approximation
to vAC when both velocities are close to
the speed of light. Use your approxima-
tion to confirm that, as both velocities
approach c, vAC also approaches c (not
2c as classical mechanics would predict).

4.126 Find an approximate general solution to the
differential equation d2x∕dt2 = (1 + x + ẋ)∕
(1 + x − ẋ) using a linear approximation valid
when x and ẋ are both close to 0.

4.127 Two coupled pendulums of length L are con-
nected as shown in the figure below.

θ1

θ2

The equations describing this system are

2𝜃1 + 𝜃2 cos
(
𝜃1 − 𝜃2

)
+ 𝜃̇

2
2 sin

(
𝜃1 − 𝜃2

)
+ 2

g
L
sin 𝜃1 = 0 (4.7.3)

𝜃2 + 𝜃1 cos
(
𝜃1 − 𝜃2

)
− 𝜃̇

2
1 sin

(
𝜃1 − 𝜃2

)
+
g
L
sin 𝜃2 = 0 (4.7.4)

These equations have no solution in terms
of simple functions. If you assume the ampli-
tude of oscillations is small, however, then
you can find approximate solutions.
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(a) The first equation begins with a func-
tion of 𝜃1, 𝜃2, 𝜃̇2, 𝜃1, and 𝜃2. Write
the linear approximation for that
five-variable function.

(b) Do the same for the second equation
(with a slightly different list of vari-
ables) and then write the two resulting
simpler differential equations.

The differential equations you just
wrote do have relatively simple solutions,
which describe the motion of these pen-
dulums for small oscillations. One such
solution takes the following form.

𝜃1 = Ae
it

√(
2+

√
2
)
(g∕L)

(4.7.5)

𝜃2 = Be
it

√(
2+

√
2
)
(g∕L)

(c) Plug this solution into your linear approx-
imation to Equation 4.7.3 and solve

for A in terms of B. Plug all the num-
bers into a calculator and express your
answer in the form A =<a number>B.

(d) Repeat Part (c) for your approximation
to Equation 4.7.4 and verify that you get
the same relationship between A and
B. This tells you that for any two num-
bers A and B with the relationship you
found, Equation 4.7.5 is a solution to
this pair of differential equations.

(e) If the motion of the coupled pendulum is
described by this solution and the upper
pendulum is oscillating with an ampli-
tude of 5◦, what will be the amplitude of
oscillation of the lower pendulum?

4.128 Generate plots of the function z =
sin(x2y) in the range −2 ≤ x ≤ 2, −2 ≤ y ≤ 2
and of its power series at different orders.
What order do you need to go to before
the power series plot looks nearly identical
to the plot of the actual function?


