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7.4 Row Reduction

Given a system of n linear equations with » unknowns, a determinant of zero tells you “this
system has either no solutions or infinitely many solutions,” but it doesn’t tell you which
situation you're in. A non-zero determinant means “this system has one unique solution,”
butit doesn’t tell you what that solution is. Moreover, calculating determinants for very large
matrices is computationally expensive. In this section we introduce a technique that fills in
those holes: it tells you the solution, or it tells you that the equations are inconsistent, or
it tells you that the equations are linearly dependent, and it’s more efficient than finding a
determinant for large systems of equations. In that sense, this section finishes the job that
Section 6.7 started.

Butin another sense, this section is independent of the rest of what we’ve been doing with
linear algebra. In this section you will not multiply matrices. You will not find their inverses,
determinants, or eigenvalues. The matrix manipulation rules in this section are unrelated to
the rules we presented throughout Chapter 6. This is simply another way you can use grids
of numbers to help you solve linear equations.

7.4.1 Explaonation: Row Reduction

Solving Linear Equations by Elimination

You may have learned at some point to solve simultaneous linear equations using a tech-
nique called “elimination” or “addition and subtraction.” You are always allowed to add or
subtract two equations; in this technique you do so to isolate variables. We will demonstrate
this process on the following three equations. The variables are x, y, and z; we use the letters
A, B, and C to refer to equations.

Ayt x—=y+22=10
By: 3x—2z=11 (7.4.1)
Co: 2x+4y—62=-6
First we eliminate x from the bottom two equations by subtracting 34, from B, and 24,
from G,.
Al x—y+22=10
By : 3y—8z=-19
C, . 6y—10z=-26
Next we eliminate y from the third equation by subtracting 2B, from it.
Ag 1 x—y+22z=10
By © 3y—8z=-19
Gt 62=12
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Dividing G, by 6 gives z = 2. You can plug this into B, to get y = —1 and plug both of these
into Ay to get x = 5.

Row Reduction

In Chapter 6 we wrote the “matrix of coefficients” for n equations with » unknowns. That
was a square matrix because it contained the coefficients of all the variables but ignored the
constant terms. When we give the constants their own column, the resulting “augmented
matrix” represents the entire system of equations.

1 -1 2 10
3 0 -2 11 (7.4.2)
2 4 -6 -6

Equation 7.4.2is perfectly equivalent to Equations 7.4.1; we just don’t bother mentioning the
variables because we know where they go. For instance, the row (1 —1 2 10) represents
the equation x — y + 2z = 10. Below we demonstrate “row reduction” on Equation 7.4.2; your
jobis to follow how this technique is line-by-line identical to the “elimination” example above.
For instance, where we previously subtracted three times the first equation from the second
equation, we now subtract three times the first row from the second row.

_ Row Reduction

Question: Solve the three equations represented by Equation 7.4.2.

Solution:

Subtract three times the first row from the second row, and also subtract two times
the first row from the third. This turns the first number in the last two rows into zero;
that is, it eliminates x from the second and third equations.

1 -1 2 10
0 3 -8 -19
0 6 -10 -26

Subtract two times the second row from the third one to get 0 in the first two spots of

the third row.
1 -1 2 10

0 3 -8 -19
0o 0 6 12

Divide the third row by 6 to get (0 0 1 2), which stands for z = 2. Add eight times that
to the second rowtoget (0 3 0 —3) and then divide that by 3 to get y = —1.
Finally add the second row minus two times the third row to the first one, and our
augmented matrix now looks like this.

1 0 0 5
01 0 -1 (7.4.3)
00 1 2

We interpret this matrix as x = 5, y = —1, and z = 2: the same result we found above.
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Now that we’ve done it, what did we do? Every step in row reduction consists of one of the
three operations described below.

Allowed Operations in Row Reduction

1. Add a multiple of one row to another row.
2. Multiply a row by a non-zero constant.
3. Switch two rows.

These are called the “elementary operations” on a matrix.

(Switching rows is never necessary, but in some cases it makes the calculations easier.)

The goal is to keep performing elementary operations until the matrix looks something
like Equation 7.4.3: a square identity matrix with an additional column on the right. Such a
matrix gives all the answers directly, such as x = 5 and so on.

Row Reduction with Dependent or Inconsistent Equations
In Chapter 6 we said that if the determinant of the matrix of coefficients is non-zero, the
equations have a unique solution. If the determinant is zero, the equations are either lin-
early dependent (infinitely many solutions) or inconsistent (no solutions). In either case
row reduction provides more information.

As an example, consider the following equations:

x—2y+5z2=2
3x+y=9
x—9y+20z= -1

We begin merrily row reducing.

1 -2 5 2
31 0 9 Write an augmented matrix to represent the equations.
1 -9 20 -1

Subtract three times the first row from the second, and
subtract the first row from the third.

Add the second row to the third, and... uh-oh.

We’ve just found that our original equations are equivalent to the three equations
x—2y+5z=2, 7y—152=3, and 0 = 0. That last row tells us that our original equations
were linearly dependent; we thought we had three constraints, but we really only had two.
If we want to find the values of x, y, and z, we’re going to need more information.
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If we had ended up with 0 = 7 instead of 0 = 0, that would have told us something quite
different. Zero never equals seven, even on a very bad day. Such a result would indicate that
our original equations were inconsistent: they had no solution.

Rank of a Matrix

We have now seen enough about row reduction to classify a set of equations into one of
three categories: “linearly dependent” (an infinite number of solutions), “inconsistent” (no
solution), or “has a unique solution” (which row reduction then gives us). But there is more
to know, and sometimes it’s important to know it.

Suppose you start with twenty equations with twenty unknowns and discover they are lin-
early dependent. That means you cannot solve for all twenty variables because there is no
unique solution. What you can do is specify some of the variables—either arbitrarily, or based
on conditions outside your twenty equations—and then solve for the rest. But how many?
Perhaps you can specify one variable and then solve for the other nineteen. On the other
hand, perhaps you need to specify thirteen of the variables before you can find the remaining
seven. This important distinction is captured in the “rank” of the augmented matrix.

Definition and Use: Rank of a Matrix
The “rank” of a matrix is its number of linearly independent rows.

If an augmented matrix of rank R represents a set of equations, you can solve those equations to
find R of the variables in terms of the remaining variables.

In our above example, if your augmented matrix turned out to be rank twelve, you could
solve for twelve of the variables in terms of the remaining eight.

Now you know what to do with the rank of a matrix, but how do you find it? The answer is,
once again, row reduction. You keep manipulating until the matrix is in “row echelon form.”

Definition and Use: Row Echelon Form

The “leading zeroes” in a matrix row are the zeroes on the left before any non-zero term. For
instance the row (0 0 5 0) has two leading zeroes.
To see if a matrix is in “row echelon form” start at the top and look at each row in succession.

1. Each row must have more leading zeroes than the previous row until you reach a row that is
all zeroes.

2. If you do reach a row that is all zeroes, all the rows below it must also have all zeroes. (In
other words the all-zero rows are clustered at the bottom.)

When a matrix is in row echelon form, the number of rows that are not all zeroes is the rank of the
matrix.

In the particular case of n equations with n» unknowns, the augmented matrix has dimen-
sions 7 X (n+ 1). In row echelon form each row must have more leading zeroes than the
previous row, so the bottom row must have at least n — 1 leading zeroes. If that bottom row
does not consist of all zeroes then your matrix is rank n and your equations are not linearly
dependent. (They may or may not be inconsistent.)
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_ Rank of a Matrix

1 5 -3 2 0o 7 1 5 -3 2 0 7
0 2 b2 4 9 0 0 2 =« 4 9 0
A= 0 -6 -3z -12 -27 0 B=|0 0 0 -12 =27 0
0 0 0 4 8 -1 00 O 0 0 0
0 0 0 0 0 0 00 O 0 0 0

Matrix A is not in row echelon form, because the third row does not have more
leading zeroes than the second. More row reduction is required before you can
determine the rank of this matrix.

Matrix B is in row echelon form. It has three non-zero rows, indicating a rank three
matrix. If this matrix represents a set of five equations, you could solve for three of
the variables in terms of the other two.

Summary: Rank of a Matrix
What does the rank of a matrix tell you about a system of equations? Before we answer that,
remember that there are two ways to represent a system of equations in a matrix. The “matrix
of coefficients” includes all the terms that involve the variables. The “augmented matrix”
adds an additional column for the constant terms in the equations. We will consider both
matrices in the following discussion—don’t get them confused!

For n equations with n unknowns here are the possibilities.

I.  Row reduction produces a unique solution.

e The equations are linearly independent and consistent.

e The matrix of coefficients has a non-zero determinant.

» The matrix of coefficients and the augmented matrix are both of rank 7.

II.  Row reduction produces a row with all zeroes except the last column.

e The equations are inconsistent (no solution).

» The matrix of coefficients has a zero determinant.

e The rank of the matrix of coefficients is less than n.

e The rank of the augmented matrix is larger than the rank of the matrix of coeffi-
cients.

IIL.  Row reduction produces m rows with all zeroes (but none with all zeroes except the last column,).

¢ The equations are linearly dependent (infinitely many solutions). Specifically, only
n — m of the equations are linearly independent.

e The matrix of coefficients has a zero determinant.

e The matrix of coefficients and the augmented matrix both have rank n — m.

* You need to specify m of the variables before you can solve for the remaining n — m
of them.

What if the augmented matrix has a lower rank than the matrix of coefficients? Take a
moment to convince yourself that it’s impossible; if this did happen it would mean that you
had a matrix with all linearly independent rows, but adding a column to it made those rows
linearly dependent.

Finally, these results can be generalized to n linear equations with u unknowns. Let M be
the matrix of coefficients and A the augmented matrix, and let Ry; and R, be their ranks.
The only possibilities are:

o If Ry > Ry, the equations are inconsistent.
o If Ry = Ry; = u the equations have one unique solution.
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e If Ry = R); < uthe equations have infinitely many solutions and can only be solved for
R, of the unknowns in terms of the remaining ones.

In the last case listed above the R, unknowns that you solve for are called the “dependent vari-
ables” and the remaining ones that you have to specify are called the “free variables.” You're
guaranteed in this case that there is at least one set of R, variables that you can designate as
dependent, but you cannot always do that for any set of R, variables that you choose.

7.4.2 Problems: Row Reduction

7.85

7.86

Walk-Through: Row Reduction. (a) Solve the system of equations from
Consider the following equations: Problem 7.85 changing the con-
stant term on the right of the first
equation from 2 to 1.
2x+3y+z+1=2 (b) Solve the system of equations from
—2x—y+2z+4t=-21 Problem 7.85 again, with the constant term
8x+20y+ 7z+ 4t =10 in the first equation back to its original 2,
9+ 15y+ 102+ 11t = —34 but this time changing the coefficient of ¢
in the fourth equation from 11 to 24.
. . . For Problems 7.87-7.98 row reduce the augmented
(a) Write .the augn}ent.ed matrix for thl.S set of matrix for the given set of equations. Give the rank of
equations. (This will be a 4x5 matrix.) the augmented matrix and say whether the equations
(b) Replace the second row with the sum are inconsistent, linearly dependent, or neither. If
of the first and second rows. they are linearly dependent, how many variables
(c) Replace the third row with the third row could you solve for? Give the unique solution to the
minus four times the first row. equations if there is one.
(d) The previous two steps eliminated the
X coelzﬁcient from ths second and third 787 x+y=3 x-y=2
equations. Take a similar step to eliminate 788 x+2y+32=0,x-2y=32=0,2x+4y=0
the x coefficient from the fourth equation. 789 x+2y+32=0,x-2y—32=0,
(e) You have now used the first row of the 3x—2y-32=0
matrix to make the first column 0 in 790 x+y+z2=2 x-2y+3z=-1,
all the other rows. In a similar way, use 3x—3y+4z=3
the (new) second row of the matrix 791 x—2y+z=3 x+z=4 x+dy+z=2
to make the second column zero in
the third and fourth rows. 7.92 x+2y-z=2, -2x—dy+2=-4
(f) Use the third row to make the third col- 3x+6y—3z=6
umn zero in the fourth row. 793 2x—y+3z+1t=-2, 6x+y+4z2—2¢t=-30,
(g) Explain how you can determine that your Ax+0y+30=36—10x+y—2:-d1=2
matrix is now in row echelon form. 794 x—z+2i=-1, x—y+z-1=3,
(h) Based on your result, identify the rank Bx—22=4,2x—-3y—ztt=1
of the original matrix. Identify the orig- 7.95 x+y+6z+7t=21,4x—-5y+8z+1=-22,
inal equations as inconsistent, linearly Ox+8z+1=~-17, x+y+62+ 7t =21
dependent, or having a unique solution. 7.96 4a—"T7c+4d=-11,4a+7b— 6¢c+ 6d = 22,
If they are linearly dependent, specify 4a+Tb+9c—4d=17,8a+Tb+2c=9
q : : 2a+6b—3c+5d=25,7a-5d=-31
[This problem depends on Problem 7.85.] For these

798 a—b+c—d=1,2a—b—c+2d=-2,

two variations of Problem 7.85, determine if 3a—%+d=—1,4a—3b+c=0

the equations are linearly independent (and
find the rank of the matrix), inconsistent, or
have a unique solution (and find it).

5To preserve his anonymity we will refer to him only as “Dad.”
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7.99 True story: A chemical engineering professor

we know® was once creating a homework prob-
lem involving a combustion reactor in which
methane (CH,) and ethane (C,Hg) react with
oxygen (O,) to form carbon monoxide (CO),
carbon dioxide (CO,), and water (H,0O).

cH, + 30, - €O+ 211,0
CH, + 20, — CO, + 2H,0
C,H, + 202 — 20O + 3H,0

C,H, + 202 - 2CO, + 3H,0

This reaction involves six molecular species.
The initial concentrations of these species
would be given as part of the problem. Of
the six final concentrations, some would be
given as “measured values” and the students
would calculate the rest. According to the
method he was using, the number of mea-
sured values he would have to give equals the
number of species minus the number of reac-
tions. In this example he would specify two
final concentrations (6-4) and the students
would calculate the other four. But his cal-
culations did not lead to consistent answers.
In this problem you will see why, and how
many final concentrations he needed to spec-
ify in order to make his problem work.

(a) Let A represent the final concentration of
CH,, B the final concentration of C,Hy,
and C, D, E, and F the final concentra-
tions of O,, CO, CO,, and H,O, respec-
tively. Write an algebraic equation to rep-
resent each chemical reaction by replacing
each chemical species with the symbol for
its concentration and the arrow with an
equal sign. For example, the first reaction
equation would be A +(3/2)C = D + 2F.
Consider A and B to be “constants” and
the remaining concentrations as vari-
ables. (We could just as well have chosen
any other two variables.) Rearrange your
equations into standard form, with the
variables on the left and the constants

on the right. Simplify the equations so
that all coefficients are integers.

®

-~

(c

~

Suppose you determined, using either a
determinant or row reduction, that your
four equations have a unique solution.
What would that tell you about the reac-
tion? That is, what would you measure
and what could you then calculate?

7.100

7.101
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(d) Write an augmented matrix for
your four equations and reduce it
to row echelon form.

(e) Mathematically—forget about chem-

istry for a moment—what does

your final matrix tell you about the

equations you started with?

(f) Now let’s return to our chemical engi-

neer. He will have to measure the

concentrations of some of his species,
and then he will be able to calculate the
rest. How many does he need to measure,
and how many can he then calculate?

We found in this case that the rows of the

augmented matrix were linearly depen-

dent, and that in turn told us something
about the reaction. What different lesson
would we draw if the rows of the aug-
mented matrix were inconsistent?

[This problem depends on Problem 7.99.] The
“water gas shift” process can be described in
terms of the following three reactions.

(9]

H,O + CO — CO, + Hy
Hy,O+H — H, + OH
OH+CO - CO, +H

Assuming the initial concentrations of all
six species are given, how many of the final
concentrations would you need to measure
before the rest would be determined?

—Ei [This problem depends on Problem 7.99.] An
experiment involves the following five reac-
tions. The initial concentrations of all six
species are known. You are going to measure
as many final concentrations as you have to,
and then calculate the remaining concen-
trations based on those measurements. How
many concentrations do you have to measure,
and how many can you then calculate?

9N,O, — 2N,O, + O,
N,O; — NO, + NO,
NO, — O, + NO
NO + N,0; — 3NO,
9NO, — N,0,

You may have a computer do the row
reduction; your job is to set up the matrix
and then interpret the results.
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