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7.5 Linear Programming and
the Simplex Method

“Linear Programming” means optimizing a linear function subject to linear constraints. In
principle this is about as easy as an optimization problem can get, but many problems involve
so many variables that brute force methods are impractical. In this section we describe the
“simplex algorithm,” a variant of row reduction that can handle problems with thousands of
variables or more.

7.5.1 Discovery Exercise: Linear Programming and
the Simplex Method

The picture shows a closed region R bounded by five lines. (The term “closed” indicates that
the boundary lines are part of the region.) The picture also shows five contour lines of the
function f(x, y) = x + 2y.
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What point in region R has the largest possible value of f(x, y)?
2. What point in region R has the smallest possible value of f(x, y)?

See Check Yourself #47 in Appendix L

3. Redraw region R and then draw in four contour lines of the function g(x,y) = y— x.
4. What point in region R has the largest value of g? The smallest value?

You should have found that all four extrema occurred at the vertices of region R. When
we know in advance that this is going to be true, we can search for minima and maxima by
looking only at the vertices.

5. Let A(x) = y+ 2x. The minimum of A(x) within region R occurs at an infinite number
of points. What points are those? Could we still find the maximum and minimum if
we only looked at the vertices?

6. In many optimization problems the maximum or minimum is found inside the region,
or along a border. Why did all the extrema in this exercise occur at the vertices? Hint:
Your answer will involve a particular property of the functions f(x), g(x), and A(x), and
also a property of the region R.
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7.5.2 Explanatfion: Linear Programming
and the Simplex Method

Chapter 4 presented two different methods of optimization, one based on the gradient and
one on Lagrange multipliers. These techniques find critical points, either in the interior of
the allowed region or on its boundaries. If you want to find a global maximum or minimum
you evaluate the function atall of those critical points and at the endpoints of the boundaries.

In this section we will consider linear functions with linear constraints. There are never any
critical points, so all you need to do is check the endpoints of the boundaries—the vertices.
But when the problem involves hundreds or thousands of variables, an efficient algorithm
for optimizing a function without checking every vertex becomes essential. Of course our
sample problems will involve only a few variables. But if you imagine scheduling airplane
flights or laying out a factory floor, you can see the importance of highly scalable algorithms.

A Sample Problem: Two Machines

Your company has two machines. The cheap machine produces 2 items per hour and costs
$4 per hour to run. The fancy machine produces 4 items per hour and costs $6 per hour to
run. You can’t run either machine for more than 40 hours per week and your total budget
for running the machines is $300. How many hours per week should you run each machine
in order to maximize the number of items you produce?

As in any optimization problem you have an “objective function” that you want to maxi-
mize (or minimize) subject to constraints on the variables. In this case the objective function
is the number of items you produce per week. The constraints include the three stated explic-
itly above, plus the implicit constraint that you can’t run a machine for a negative amount

of time.
objective function: f(F,C) =4F +2C

7.5.1
constraints: /' <40; C<40; 6F+4C<300; F,C>0 ( )

What makes this a “linear programming” problem is that the objective function and the con-
straints are all based on linear functions. In this problem the constraints are all inequalities
but they can also be equations as long as they are linear.

Very small problems can often be solved by inspection. In this example the fancy machine
is more efficient so you’ll want to run it for 40 hours and use the rest of your budget run-
ning the cheap machine. But things get complicated once you throw in maintenance costs,
shipping times, different types of workers, raw materials needed, and so on. In this section
we describe the “simplex algorithm,” the most commonly used method for solving linear
programming problems.

A Picture and Some Words
The independent variables in Equations 7.5.1 represent machine hours, but we can think
of them as coordinates that define a two-dimensional space. The five constraints define a
region in that space.

The Discovery Exercise (Section 7.5.1) was designed to convince you of the following fact.

- Very Important Fact <+

If your objective is a linear function, and your maximum values of your objective function within

constraints are linear functions that define a closed  the region occur at vertices of the boundary.
bounded region, then the minimum and
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FIGURE 7.5 The “feasible region” for the machine problem. The blue dots at the vertices indicate
“basic feasible solutions.”

A “feasible solution” of Equations 7.5.1 is any point in the shaded region of Figure 7.5;
that is, any combination of the independent variables that satisfies all the constraints in the
problem. A “basic feasible solution” is any vertex of the boundary of the region.

The important fact above suggests an optimization technique based on basic feasible solu-
tions. Find all the vertices—that is, all the points of intersection of the constraints—and
evaluate the objective function at each one. The highest value you find is the maximum
value of the function within the feasible region.

That’s absolutely true, but it’s not practical. Consider the region bounded by the
constraints x + 2y 4+ 102 < 20, 8x 4+ y+ 42 <12, 2x +6y—2<6,3y+2<3,x>0,y>0,2> 0.
We’ll get you started by telling you that one of the vertices is the origin. Now you find
the rest.

We trust you see the difficulty. With three variables each constraint is a plane, the feasi-
ble region is a polyhedron, and each vertex is the intersection of three constraints. With a
hundred variables and a thousand constraints ... well, we need a systematic approach. Each
step of the simplex method moves from one vertex to another vertex at which the objective
function is higher. In cases where the origin is one of the vertices, you start there and step
from vertex to vertex until you reach the maximum. In cases where the origin is not one of
the vertices we add a “first phase” that finds a vertex to use as a starting point.

Before we present the method, we need to make a few more points about constraints.

» A constraint that is an inequality forms a boundary of the feasible region, and there is
no limit to how many you can have. For instance, the feasible region for two variables
with 17 inequality constraints would be a 17-sided polygon.

» A constraint thatis an equation reduces the dimensionality of the problem by one. If you
have three variables related by a linear equation, the feasible region lies on the plane
defined by that equation. You could if you wished solve that equation to eliminate one
variable and thus have a two-variable problem with only inequality constraints.

« If your objective function is parallel to a constraint then the maximum or minimum
may occur along that constraint. (Imagine trying to minimize the function f(I7, C) = C
in Figure 7.5.) It still must be true that the extremum occurs at a vertex, but it can
occur at more than one vertex and everywhere on the boundary connecting them.
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 If there is no combination of variables that satisfies the constraints the problem is
“infeasible.” (Imagine trying to satisfy y < x + 3 and y > 2x + 7, remembering that both
xand ymust be positive.) If there is a feasible region but the function has no maximum
or minimum within it then the problem is “unbounded,” which can only occur if the
feasible region is infinite. (See Problem 7.118.) All this looks simple in a 2D picture,
but faced with a set of inequalities it may not be obvious if they bound a finite region,
an infinite region, or no region at all. The simplex method, in addition to finding
maxima and minima, helps us properly classify the region defined by the constraints.

One Problem Written in Four Ways

The method we present here involves a gradual process of rewriting the initial problem. The
objective function and the constraints will generally go through four distinct forms, two of
which have names.

1. The original form in which they are presented (such as Equations 7.5.1 above).
2. The “normal form.”

3. The “restricted normal form.”

4. And finally, the form that we actually want.

We’re going to begin at the end, so you know what we’re looking for. The following is a
maximization problem presented in Form 4. (This is a new problem; we’ll come back to our
machinery example later.)

Sy, %o, X3, %4) = —2x5 — 7y + 20
X+ + Txg + 13x, = 20 .
Xo - ng + X4 = 8 (7.5'2)

Xy, X, X3, %4 > 0

Once your problem looks like Equations 7.5.2, you’re done. Here’s why.

The last constraint says none of the variables can be negative. Based on that you should
be able to convince yourself that this particular objective function cannot possibly be bigger
than 20. So if the objective function can reach 20 exactly—that is, if x3 = x, = 0 is compat-
ible with the other constraints—then we have our maximum. Plug that in and the first two
constraints immediately become x; = 20 and xy = 8, both of which satisfy the last constraint,
so we have a solution.

Our approach to any linear programming problem will be to make it look like
Equations 7.5.2 and then read off the solution as we did above. So before we proceed,
we urge you to consider the following question: what are the defining properties of
Equations 7.5.2? That is, what characteristics of the objective function and the constraints
enabled us to see the answer with no real calculations? Jot down your answers. A little later
in this explanation we’ll give you our answers and you can see how yours compare.

You may also want to consider how these properties would change if we were minimizing
instead of maximizing. From here on we will only consider maximization problems, but the
same technique applies with minor modifications to minimization. See Problem 7.119.

Normal Form and Restricted Normal Form

The first step in the simplex method is to write the problem in “normal form.”®

6Many sources define “normal form” without the constant ¢, in the objective function. We include it because in
the course of the simplex solution such a constant will get added to f even it wasn’t there to start with.
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Definition: Normal Form of a Linear Programming Problem
Alinear programming problem written in “normal form” asks you to maximize an objective function
of n variables, [ = ¢,x; + X + ¢3x3 + ... + ¢, X, + ¢,,, subject to x; > 0 and the following m linear
constraint equations.
ay X+ Aoy + ay3xy + ...+ ay,x, = b
g1 %)+ Qoo Xy + Qo3 X + o+ Gy, %, = by
Q1 Xy + QoXo + GpgXg + ...+ a,,x, = b,

mnn

All the constants b; must be non-negative.

Not every linear programming problem looks like the normal form described above, but
every linear programming can be put into normal form with three tricks.

» Rewrite inequality constraints as equations by introducing extra variables. For example,
6F +4C < 300 becomes 6F +4C + S = 300, S > 0. Sis called a “slack variable” because
it takes up the slack between the left and right sides of the original inequality. If
6F +4C > 300 write 6/ +4C — S = 300, S > 0; this S is called a “surplus variable.”

o Ifany of the ), are negative, multiply that constraint equation by —1.

 Finally, you might have a variable x that doesn’t have the constraint x > 0. If it has a
different limit you can fix this easily by replacing it with a new variable. If x > -7 let
y=x+7orif x <0let y=—x. Rewrite your problem in terms of y instead of x and you
have the constraint y > 0. If x isn’t constrained replace it with two variables: x = y — z.
Now y,z > 0 covers all possible values of x. See Problem 7.120.

Those rules leave an ambiguity if you have a constraint such as x > 2. Because x is already
constrained to be positive you could write x — § = 2. Our recommendation, however, is to
define a new variable y = x — 2 which gives you only one variable (y) and only one constraint
(y>0) to work with.

For the machine example (Equations 7.5.1) we only need the first of these tricks to get to
normal form.

objective function: f(F, C) = 4F +2C (7.5.3)

constraints: F'+ S, =40; C+ S, =40; 6F+4C+ S3=300; F,C>0 o
You probably won’t be shocked to hear thatitis conventional to write these equations without
the variables. The augmented matrix for a linear programming problem in normal form is
called a “simplex tableau.” Notice that we pull the variables in the equation for f to the left
side to make them line up with the other equations, so they change sign.

[ F C S S S

1 -4 -2 0 0 0 0

01 0 1 0 0 40

00 1 0 1 0 40 (7.5.4)
0 6 4 0 0 1 300

Switching from a list of equations to a matrix is not a change in form—it’s just a different way
of writing the same form. Given our list of four forms above you might expect our next step
to be converting the machine example from “normal form” to “restricted normal form.” In
this case, however, we are already in restricted normal form. Let’s see what that means.

&
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Definition: Restricted Normal Form of a Linear Programming Problem

A “basic variable” is one that has a positive coefficient in one of the constraint equations and zero
coefficient in the objective function and all the other constraints. A linear programming problem
is in “restricted normal form” if it is in normal form (as defined above) and every constraint has at
least one basic variable in it.

Restricted normal form categorizes the variables into two types. In Equation 7.5.4 the
basic variables are S, Sy, and S3. (You can easily identify a basic variable by looking for a
column with one positive entry and the rest zero.) The other variables, which generally make
up the objective function, are “non-basic.” In Equation 7.5.4 these are F and C.

When the tableau is in restricted normal form you can immediately read off one solu-
tion by setting all the non-basic variables to zero. This particular tableau suggests ' = C = 0,
S; = S =40, and S5 = 300. The corresponding value of the objective function comes from
the first row, and in this case is / = 0.

Itis a true but non-obvious result that the solution represented by a tableau in restricted
normal form is a basic feasible solution, meaning it corresponds to a vertex of the feasible
region.

But we do not yet have an optimal solution. The difference between Equation 7.5.4
(“restricted normal form”) and Equations 7.5.2 (“what we actually want”) is that the coeffi-
cients of the non-basic variables in the first row are negative. That means setting them to zero
does not maximize the objective function. (Remember that we moved those coefficients
to the left side of the equation. Equation 7.5.2 was optimal because the coefficients in the
objective function were all negative, but that means they would appear as positive numbers
in the first row of the simplex tableau.)

We can now fully answer our own question “What are the defining properties of
Equations 7.5.2?” The answer is all the requirements for normal form, plus the added
requirements for restricted normal form, plus one more: all the coefficients in the first row
of the tableau must be zero or positive. When you have your equations in that form, you
have your solution.

You may recall that as soon as we converted this particular problem into normal form
it was in restricted normal form. In this Explanation we will only consider problems of that
type. In Section 7.5.3 we will take up the question of how to convert normal form to restricted
normal form in cases where you have to do so manually. But for now, we will continue with
the machine problem.

Finding the Optimal Solution

Equation 7.5.4 represents one vertex of the feasible region, but it is not the right vertex. The
simplex method gives us a way of stepping from this vertex to a better one. Each such step
brings us closer to the goal until we reach the maximum value of the objective function.

Here is another way of expressing the same goal. Equation 7.5.4 is in restricted normal
form, but it has negative variables in the top row. The simplex method gives us a way of
replacing one such variable with a zero, while a different variable in the top row goes from
zero to a positive number. Each such step improves our tableau until it reaches the form that
we want.

Either way you look at it, each step follows the rules of row reduction.

Look at the second column in Equation 7.5.4, the F. You see a —4 at the top (which is
why we want to change this), a 1, a 0, and a 6. We are going to turn I into a basic variable,
meaning it will have a non-zero coefficient in only one constraint. That constraint (called
the “pivot”) will be the second row. We want to make all other entries in the ' column go
to zero. So we add four times the second row to the first row, and we subtract six times the
second row from the fourth row.

&
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fF C S S S fF C S S S

1 -4 -2 0 0 0 0 1 0 -2 4 0 0 160

0 1 0 1 0 0 40| _ 0 1 100 4o ool
00 1 0 1 0 40 00 1 0 1 0 40 2
0 6 4 0 0 1 300 0 0 -6 0 1 60

Make sure you followed the two row operations we used! Then look at the results. I has
become a basic variable, while S| has become non-basic. We are still in restricted normal form
so the entire tableau still represents a solution, which is now f = 160. That’s an improvement
over our previous solution, but the —2 at the top of the C column means it’s still not optimal.

But before we fix that last problem, let’s look at two decisions we made in turning
Equation 7.5.4 into Equation 7.5.5.

o Why did we get vid of I first instead of C? It was mostly arbitrary. We could have chosen
C instead, and we would have eventually reached the same solution we’re going to
reach this way. It is possible in principle, however, for the simplex method to enter an
infinite loop, and you can avoid this with “Bland’s rule”: always choose the leftmost
column with a negative coefficient in the first row.” The cycling problem almost never
arises in practice and there are algorithms for choosing a column that will move you
to the optimal solution as quickly as possible, but Bland’s rule provides a good simple
approach.

o Why did we choose the second row as the pivot? That is not arbitrary! We could have used the
fourth row to eliminate F coefficients from all other rows, but we would have ended
up with a negative number on the right side of the second row; we would no longer be
in normal form. (Try it!) Avoid this problem with the “minimum ratio rule.” Having
chosen F as the pivot column, look at all the constraints that have positive entries in
the I column (ignoring those with zero or negative entries). For each such constraint
calculate the ratio of the rightmost coefficient (the constant) to the F coefficient. The
pivotis the row with the smallest ratio. (If two rows are tied for smallest Bland’s rule says
to choose the topmost one.) In Equation 7.5.4 the second row had a ratio of 40/1 = 40
and the fourth row had a ratio of 300/6 = 50, so we had to use the second.

To finish the problem, we pick up from Equation 7.5.5. Since C still has a negative coefficient
on top we do a pivot somewhere on that column. The ratio for the third row is 40/1 = 40
and for the fourth row 60/4 = 15, so we pivot about the fourth row.

JFCos s S JOF C oS 8 s

1 0 -2 4 0 0 160 1 0 0 1 0 1/2 190

0O 1 0 1 0 0 40 N 0 1 0 1 0 0 40 (75.6)
0 0 1 0 1 0 40 00 0 32 1 -1/4 25 -
0O 0 4 -6 0 1 60 0O 0 4 -6 0 1 60

The basic variables are now F, C, and S,. Since there are no negative numbers in the first row,
we’ve found the optimal solution. Setting the non-basic variables to zero gives the solution
F =40, C =15, and f = 190. In other words, you should run the fancy machine for 40 hours
and use the rest of your budget running the cheap machine. (We expected that, remember?)

Suppose there is a variable whose coefficient in the top row is negative and it doesn’t have
any positive coefficients in the constraints? You’ll show in Problem 7.121 that this implies the
problem is unbounded.

"Bland, Robert G. (May 1977). “New finite pivoting rules for the simplex method”. Mathematics of Operations
Research 2 (2): 103-107.
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BT The simplex Method

Problem:
Maximize f = 2x; + 3xy — x5 subject to x; + 3xy — x5 < 6, 2x; + xo + 2x3 < 4,
Xy, Xo, X3 > 0.

Answer:

First convert the inequalities to equations using slack variables: x; + 3xy — x3 + §; = 6,
2x1 + X9 + 2x3 + Sy = 4. Next write the initial simplex tableau. Remember that the
coefficients in f are being pulled to the left of the equation, so they all switch sign.

S o % xS S

1 -2 -3 1 0 0 O
0 1 3 -1 1 0 6
0 2 1 2 0 1 4

This is in restricted normal form with S; and S, as basic variables. The x3 coefficient
in the top row is already positive, so we need to do something about the x; and x,
entries; following Bland’s rule we choose x;. (If you want the practice you could redo
the problem starting with x, and verify that you get to the same final answer.) The
ratios of the constant to the x; coefficients are 6/1 = 6 and 4/2 = 2, so we use row 3
as the pivot. Add the third row to the first row and subtract 1/2 of the third row from
the second row.

oo o S8

10 -2 3 0 1 4

0 0 5/2 -2 1 -1/2 4

0 2 1 2 0 1 4

The next pivot column is x,. The ratios are 4/(5/2) = 8/5 and 4/1 = 4, so the second
row has the smallest one this time. Add 4/5 of the second row to the first one and
subtract 2/5 of the second row from the third one.

S o x ox X3 5 S

1 0 O 7/5 4/5 3/5 36/5
0 0 5/2 =2 1 -1/2 4
0 2 0 14/5 -2/5 6/5 12/5

Since all of the coefficients in the first row are positive we’ve reached the maximum
value: f = 36/5. This value is obtained by setting all of the non-basic variables to zero,
which turns the bottom two rows into (5/2)x, = 4 and 2x; = 12/5. So the maximum
value occurs at x; = 6/5, xo = 8/5, x3 = 0.

Stepping Back
The simplex method begins with a linear optimization problem and consists of the following
steps to solve it.

1.

Use the tricks described above to ensure that every independent variable has a con-
straint of the form x; > 0.

2. Add slack and/or surplus variables to any inequalities to turn them into equations.

&
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3. If any constraint equations have negative constant terms, multiply them by —1. Your
problem is now in normal form.

4. Move the variables in the objective function to the left side and write the objective
function and all constraints in an augmented matrix, a.k.a. a “simplex tableau.”

5. If your problem isn’t in restricted normal form use the “two-phase” method described below to fix
that. If the problem is infeasible then it will not be in restricted normal form and the two-phase
method will fail in a way we describe below.

6. Find the solution.

(a) If none of the variables have negative coefficients in the first row you’ve found
the solution. Skip to Step 7. If there is a variable with a negative coefficient in the
first row and no positive coefficients below it the problem is unbounded, and you
should stop.

(b) Choose the leftmost negative coefficient in the first row to change into a basic
variable.

(c) Consider all the positive coefficients in the column for that variable and use the
minimum ratio rule to select which one to pivot about. In case of a tie use the
topmost of the possible ones as your pivot.

(d) Use the techniques of row reduction to set all of the coefficients in your pivot
column except the pivot itself to zero. This will make that variable basic, and it
should make one of the other variables non-basic. (Occasionally this step will also
make another variable basic as well. You can simply proceed as usual when this
happens.)

(e) Return to Step 6a.

7. Once the problem is in restricted normal form with no negative coefficients in the
first row, you’re done. Set all the non-basic variables to zero and read off the values of
the basic variables and the objective function.

There are a couple of mistakes to watch out for in this process.

¢ Remember that you have to bring all the non-constant terms in the objective function
to the left side of the equation before you write the tableau, so their signs will flip.

e A tableau is not in restricted normal form just because each constraint has a variable
that doesn’t appear in any other constraint. You also have to get the coefficient of that
variable in the objective function equal to zero.

To minimize a function with the simplex method you have two options. First, you can take
the negative of your objective function and maximize that. Alternatively, you can use the
simplex method exactly as described here except that you pivot around columns with positive
entries in the first row, and you’re done when all the non-basic variables have negative entries
there. See Problem 7.119.

At this point you know how to do basic simplex problems. We encourage you to practice
with a few problems, starting with Problem 7.108, and get comfortable with the process. Then
come back and read Section 7.5.3 dealing with the “two-phase” simplex method.

7.5.3 Explanation: The Two-Phase Simplex Method

One thing you may not have noticed about our examples so far is that all the constraints
(other than the ubiquitous “no negative variables”) were of the form a;x; + agxy +... < b
where b > 0. It’s not hard to convince yourself in such a situation that the origin must be one
of the vertices. The simplex method begins its vertex-hopping from there.

But replace one of those constraints with a;x; + agxo + ... > bor a;x; + agxo + ... = b (still
with b > 0) and the origin is no longer in the feasible region. That’s a problem because the
simplex method is designed to move from one vertex to another, so where does it start? Here

&
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we discuss a technique you can use to find one vertex—that is, one basic feasible solution.
From there you can begin the simplex method.

Here is an alternative way of expressing the same idea. In our previous examples we put
our problems into normal form and found that they were also in restricted normal form.
Here we discuss the extra step that is required when that doesn’t happen.

Remember that in restricted normal form every constraint contains at least one basic vari-
able. That variable’s coefficient is positive in that constraint and zero in all other equations.
For instance, if your problem has four constraints then you need to rewrite it with at least
four basic variables.

One tool for accomplishing that is the standard row reduction operations. Choose any
four variables and attempt to make them basic by zeroing out all but one of their coefficients.
If you end up with positive numbers in all the right places then your problem is in the right
form. If not, choose four different variables and try again. Eventually you will find a feasible
solution (or exhaust all possibilities and thus prove that none exists). But this needle-in-a-
haystack approach is not practical with large numbers of variables.

We therefore introduce a new trick. This trick is designed to find one basic feasible solu-
tion: that is, to put a tableau into restricted normal form. That is the first phase of the
“two-phase simplex method” and the second phase then proceeds as we described above.

Consider the following example.

objective function: f(x, xo) = 2% — 3xy (7.5.7)
constraints: x; +2x <2, x +x% > 1; x,%% >0 o

We can put this in normal form by introducing a slack variable in the first constraint and a
surplus variable in the second one: x| + 2x, + S} = 2, % + x — Sy = 1. We can then write a
simplex tableau.

SO =
A
o
=)
o
=)

This looks almost like restricted normal form, but it’s not because the S, entry is negative.
This tableau therefore does not represent a feasible solution: if we set x; = x, = 0 we get
Sy = —1, which is not allowed. We need to rewrite this tableau to have two non-negative basic
variables.

We begin by defining an entirely new problem, complete with new variables and a new
objective function.

1. Add one new variable to each constraint. This example has two constraints so we add
z; to the first and z to the second. Visually this means adding a new z; column (with a
1 in the first constraint and 0 in all other rows), and a new z, column (1 in the second
constraint and 0 in all other rows).

2. Define a new objective function f; = —z — 2. Visually this means replacing the top
row with a new row with 1s in the new columns.

So here is the new problem we will solve.

objective function: f, = —z; — 2
constraints: x; +2x + 8] +2; =2; X + X — So +20 =15 %1, %, 81,80, 2,2 >0
We are going to use the simplex method, just as we presented it before, to solve this new

problem. But what will that buy us? Optimizing the f;, that we just made up doesn’t optimize
the f; in the problem. But we’ll see below that the solution to this new problem is a basic

&
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feasible solution to the original problem, which we can use as a starting point for solving
that problem.
In this example our simplex tableau starts here.

oo ox X S S oz oz

1 0 0 O 0 1 1 0
o 1 2 1 0 1 0 2
0 1 1 0 -1 0 1 1

We begin by making both z variables basic, so we subtract the second row from the first and
then subtract the third row from the first.

oo X X S S o oz
1 -2 -3 -1 1 0 0 -3
0 1 2 1 o 1 0
0 1 1 0o -1 0 1

We are now in restricted normal form (for this problem, not the original problem). To get
rid of the —2x; we pivot about the third row, because it has the lowest ratio.

oo X X S S oz oz

1 0 -1 -1 -1 0 2 -1
0 0 1 1 1 1 -1 1
0o 1 1 0 -1 0 1 1

Now get rid of the —xy, pivoting about the second row. (Both ratios are the same so we chose
the topmost of them.)

foox % S8 on oz

1 0 0 O 0 1 1 0

00 1 1 1 1 -1 1 (7.5.8)
o 1 0 -1 -2 -1 2 0

The first phase is now over. We find that f, reaches a maximum value of zero when z; = z = 0.
(Given thatwe defined f;, = —z — 2 for non-negative zvalues, this result was predictable from
the outset.) But we’re now going to return to the original problem, undoing the two steps
that we used to go from that problem to this new one.

1. Eliminate both columns that represent the z variables.
2. Replace the top f, row with the original f; row from the problem.

S o xS S

1 =23 0 0 0
00 1 1 1 1 (7.5.9)
01 0 -1 -2 0

The point of the first phase was to rewrite the constraints (all rows but the top one).
Equation 7.5.8 represented a valid solution to the f, constraints with z; =2z =0, so
Equation 7.5.9 mustrepresent a valid solution to the original constraints. And Equation 7.5.8
had two basic variables, so they should still be basic in our new f; tableau... right?

Not quite. x; and x appear in only one constraint each, but they are no longer basic
variables because they also appear in the objective function. So you now have to take an extra
step to make them zero in the top row. Both of your humble authors have vivid memories

&
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of forgetting this step when we first learned the simplex method, so we particularly caution
you to look for it! We will add twice the third row to the first row, and subtract three times
the second row from the first row, and then we will really be in restricted normal form.

Joxmox S8

1 0 0 -5 -7 -3
0 0 1 1 1 1
o 1 0 -1 -2 0

The tableau is now in restricted normal form and the standard simplex method can begin.
Pivot about the second row in the S; column, then pivot about the second row in the S,

column.
S oo % S 0S5 f oo % S 0%
1 0 5 0 -2 2 1 0 7 2 0 4
o 0 1 1 1 1}, o 0 1 1 1 1
o 1 1 0 -1 1 o1 2 1 0 2

The optimal value of f is 4, and it occurs at x; = 2, xo = 0.

_ The Two-Phase Simplex Method

Problem:
Maximize f = 4x; — 2x, subject to x; + xo <5, 3x; + x5 = 6, x1, % > 0.

Answer:
Before you look at our solution, we encourage you to graph this problem on the
X Xo-plane and figure out the correct answer.
We add a slack variable to the first constraint to turn it into x; + xo + §; = 5, and we
get the following simplex tableau.

S o xS

1 -4 2 0 0
0 1 1 1 b
0 3 1 0 6

This is not in restricted normal form; it needs one more basic variable. You could try
to get another one with row reduction. In this case if you tried with x; it would work
and if you tried with x, it wouldn’t. (Try!) With many more variables, however, it
would be prohibitive to find a good set of basic variables by trial and error, so we’ll
use the two-phase simplex method.

Phase 1: Add a new variable to each constraint and maximize the function fo = —z — zo.

1 0 0 0 1 1 0
o 1 1 1 1 0 5
0o 3 1 0 0 1 6

The z; are the basic variables, so to get this into reduced normal form we need to get
their coefficients in the first row to zero. To do that we subtract the sum of the lower
two rows from the first one.
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o @ X S oz oz

1 4 -2 -1 0 0 -11
0 1 1 1 1 0 5
o 3 1 o0 0 1 6

After that we proceed with the usual simplex method. We pivot about the bottom row
in the x; column, and then we pivot about the middle row in the x, column.

b x Xo Sy % o ox X 5 2] 29

1 0 -2/3 -1 0 4/3 -3 1 0 0 0 1 1 0
0 0 2/3 1 1 -1/3 3 |, 0o 0 2/3 1 1 -1/3 3
0 3 1 0 0 1 6 0 3 0 -3/2 -3/2 3/2 3/2

The first phase is over. The optimum solution f; = 0 occurs when z; = z, = 0, as we

hoped. We could also read off the values of the other variables, but we don’t care

since this isn’t actually the problem we wanted to solve. What we care about is that

we’ve turned two of the original variables into basic variables. So we continue...
Phase 2: Toss out the z; columns and put the original objective function back in.

| Xo 5

-4 2 0 0
0 2/3 1 3
3 0 -3/2 3/2

SO =~

Now comes the step we warned you about; we are not in restricted normal form! The
variables x; and x, are no longer basic until we zero out their coefficients in the top
row. That requires subtracting 3 times row 2 and adding 4/3 times row 3.

fox % S

1 0 0 -5 -7
0 0 2/3 1 3
0 3 0 =3/2 3/2

The pivot column is the —5 on top, and it only has one positive entry below it so we
pivot about that 1.

o X9 S

1 0 10/3 0 8
0 0 2/3 1 3
03 1 0 6

And at last we’re done. The optimal solution is /= 8 and it occurs at x; = 2, x = 0.

Stepping Back

In the examples we solved in Section 7.5.2, all of the constraints were of the “less than or
equal” form. Algebraically that meant that every constraint was written with a slack variable
and the initial simplex tableau started in restricted normal form, with those slack variables
as the initial set of basic variables. That initial basic feasible solution corresponded to setting
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all of the x; equal to zero. In other words the initial vertex was the origin, and the simplex
method proceeded from there.

In this section we looked at problems where the constraints included equations or “greater

than” inequalities, which often means the origin is not in the feasible region. There’s no obvi-
ous starting vertex, which shows up algebraically in the fact that the initial simplex tableau
isn’t in restricted normal form. The two-phase simplex method finds you a vertex to start
from.

The outline of this process always looks the same.

1. Add one new variable z; to each constraint. Define a new objective function f, that is
—1 times the sum of all these new variables.

2. Create the simplex tableau for your new problem. Add the sum of all the constraint
rows to the first row so that the new z variables are all basic.

3. Use the simplex method to maximize f.

4. Assuming all the z; are non-basic, remove the z columns and put the original objective
function back into the first row.

5. You should now have one variable in each constraint that doesn’t appear in any other
constraint. Use row reduction techniques to set the first-row coefficients of those vari-
ables to zero. You are now in restricted normal form.

6. Use the simplex method to maximize f.

If the first phase doesn’t have an optimal solution where the z; are all non-basic, that means

the original problem was infeasible.

7.5.4 Problems: Linear Programming and the Simplex Method

7.102 Equation 7.5.6 represents the final tableau for 4C + 6F < 300. The feasible region for this
a linear optimization problem. Convert this problem is shown in Figure 7.5. Each bound-
matrix into an objective function and a set ary of this region corresponds to one of the
of constraints. Then explain using words and variables in Equations 7.5.3 being equal to
equations how you can find the optimal solu- zero. For example, the bottom edge has /' =0
tion for the problem so expressed, and how and the rightmost edge has §; = 0.
you know your solution is optimal. Hint: we (a) Copy this sketch.

provide a similar explanation for the different
problem represented by Equations 7.5.2.

For Problems 7.103-7.105 sketch the feasible region
in the x, x,-plane. Add contour lines of the objective
function to your sketch and use them to predict the
vertex where f will be maximized. Then calculate f at
each vertex and verify your answer.

sible solution to the machine prob-

that tableau to a different tableau.

J= x4 Ky, 2% 4+ %y <2 Which vertex does th.at represent, and
what solution? Equation 7.5.6 steps to
a third tableau; which vertex does that

represent, and what solution?

7.103

7104 f=2x +3x, x +20 <4, 5 +x% <3

7005 [ =x —4dxy, X + 2% >4, x +x <4

7.106 In the Explanation (Section 7.5.2) we claimed

that a tableau in restricted normal form always
corresponds to a vertex of the feasible region.
To see why that’s true consider our machine
example, with the constraints C < 40, FF < 40,

in normal form would have 9 variables.

(b) For each vertex of the feasible region,
identify which two variables equal zero.

(c) Equation 7.5.4 represents a basic fea-

lem. It tells us that if ¥ = C = 0—the
lower left-hand corner of Figure 7.5—
then f = 0. Equation 7.5.5 steps from

7.107 Suppose a linear programming problem
started with two variables x, and x, and 7
inequalities, not counting x;, x, > 0. Including
the slack and surplus variables, the problem
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(a) At each vertex, how many of those
variables would equal zero? Hint: con-
sider what a sketch of the feasible
region would look like before introduc-
ing slack and surplus variables.

(b

~

If you had a simplex tableau in
restricted normal form for this prob-
lem, how many basic (non-zero) vari-
ables would it have? How many non-
basic variables would it have?

You should have concluded that a vertex
of the original problem corresponds to the
same condition as a tableau in restricted nor-
mal form. Now consider a problem that has
three variables with x;, x,, x3 > 0, plus an addi-
tional m constraints. Once again each bound-
ary would correspond to one variable being
zero, but now each boundary is a plane.

(¢) How many variables equal zero at each
vertex? Hint: you can answer this eas-
ily if you’re good at picturing in 3D,
but if you’re not remember that each
boundary is a linear equation in the
original three variables. How many of
those equations must be simultane-
ously satisfied to define a point?

It

=

How many basic and non-basic vari-
ables would a tableau in restricted nor-
mal form for this problem have?

Once again you should have concluded that
a tableau in restricted normal form corre-
sponds to a set of variable values that occurs
at a vertex of the original problem.

7.108 Walk-Through: The Simplex Method.

Maximize the function f = x; + 2x,

subject to the constraints x; — x, < 4,

% +3x <6, and x;, xy > 0.

(a) Write the constraints in normal
form by adding a slack variable to
the first two inequalities.

(b) Write the initial simplex tableau. It
will have one row for the objective
function and two rows for the con-
straints. (The non-negativity conditions
are assumed, and don’t appear in the
tableau.) Remember that the coefficients
in f switch signs when you bring them
to the left side of the equation.

(c) You'll use the first negative entry in the
first row as your pivot column. According

to the minimum ratio rule, which row in
that column should you use for your pivot?

(d) Pivot about that spot and write the
resulting tableau.

(e) What spot (column and row) should you
use as your next pivot? How do you know?

(f) Pivot about that spot and write the
resulting tableau.

(g) Your tableau should now indicate that the
problem is solved. What feature(s) of the
tableau let you know this? (If it doesn’t
indicate that the problem is solved you’ve
made a mistake. Go back and find it.)

(h) What is the maximum value of / and
the values of x; and x, at which it
occurs?

[This problem depends on Problem 7.108.]
Sketch the feasible region defined by the
constraints in Problem 7.108. Add con-
tours of f to your plot, and use those con-
tours to explain how you could know which
vertex the maximum of f is on. Verify

7.109

that your answer matches your answer to
Problem 7.108.

For Problems 7.110-7.116 find the maximum value of
the function f subject to the given constraints.
Assume in each case that all of the independent
variables are constrained to be non-negative. You may
find it helpful to first work through Problem 7.108 as
a model.

For the problems with two variables you can
check your answers by drawing the feasible region
and using contours of f to find the optimal vertex.
We don’t recommend that technique for three-
variable problems unless you have extremely good 3D
drawing skills, and even then we wouldn’t
recommend it for 4D problems.®

7010 f=3x —2x, X, + %, < 4

TA11 f = —=bx; + 2%y, x; — X < 4, —x; +2x, < 2

7112 f=2x + %, x; — 3% < 4, —x; + 2, < 2

7113 [ =—2x + %, 0 — 3%, < 4, —x; +2x, < 2

7114 [ =% + 3%, 2% — % <3, —x +2x, < 1,
X+ 2x <2

7115 f=2x —x + x5, X, + % + x5 < 1,
X+ 2% +3x5 <2

7116 f=x +3x, 6 +x%+x+x, <1,
X — 2% — X3 + 2%, < 1

SBut see http://www.felderbooks.com/papers/4dplots.html if you really want to.
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Maximize f = x; — x, subject to the con-
straints x; + 3x, < 10, x; > 0, x, > 2. (The
last constraint makes this a bit different from
the problems in the block above.)

If all the variables in a linear programming
problem are bounded above and below so
the feasible region is finite, the problem is
guaranteed to be bounded. The converse is
not true; you can have a bounded problem
even if some variables are unbounded. Con-

sider x; — Xy <2, =0 + 24, < 1, %1, % > 0.

(a) Sketch the feasible region. Explain
how your sketch shows that x; and x,
are not bounded from above.

(b) Add contour lines of [ = x; — 2x, to
your sketch and use them to predict
whether / has a maximum in the fea-
sible region, and if so where.

(c

~

Use the simplex method to maxi-
mize f subject to these constraints
and verify that the maximum occurs
at the vertex you predicted.

d

=

Copy your sketch of the feasible region
and add contour lines of g = x; + 2x,.
Predict whether g has a maximum in
the feasible region and if so where,
and then use the simplex method

to check your prediction.

To minimize a function you can use the sim-
plex method exactly as we’ve described it,
except that you keep pivoting until there
are no positive coefficients in the top row.
Use this method to minimize the func-

tion f = x; — x, subject to x; +2x, <5,

2x, — % < 3, and of course x;, x, > 0.
Maximize the function /= x; — 2x, subject
to the constraints x; + x, < 2, x; — % < 1,

% > 0. This looks a lot like the problems
we’ve been solving but there’s no explicit
constraint on x,. Because this is such a small
problem you could draw the feasible region
and figure out the limits on x,, but for large
problems it’s not always easy to figure out if
a variable is bounded, never mind what its
limits are. The systematic way to do this is to
define x, = y — z, subject to y, z > 0. Rewrite
the objective function and constraints in
terms of y and z and then use the simplex
method to maximize f. Hint: At the end you
may have to make some arbitrary-looking
decisions about y and z. Remember that
what really matters is what they imply
about x,.

7.121 Consider the following simplex tableau

in restricted normal form.

Somo % S S S

1 2 -1 0 0 0 2
0o 3 -2 1 0 0 3
0O -2 -3 0 1 0 3
0 1 0o 0 0 1 1

This does not represent an optimal solution
because the coefficient of x, in f is negative.
But there is no row in that column you can
use as a pivot because none of the coefficients
are positive. We claimed in the Explanation
(Section 7.5.2) that this means the problem
is unbounded, but we didn’t explain why.
(a) Instead of setting x; = x, = 0 set x; =0,
%, = 1. Find the values of S, S,, and S;
that satisfy all of the constraints, and
find the corresponding value of f.

(b) Repeat Part (a) but set x, = 100.
(c) What happens to f in the limit where you
increase x, without bound, adjusting the S

variables to keep the constraints satisfied?

-~

(d) Change the last entry in the x, column
from 0 to 1. Now try setting x, = 100
as you did before and explain
why it doesn’t work.

7.122 Walk-Through: The Two-Phase Simplex

Method. In this problem you will maxi-
mize the function f = 2x — 3x, subject to
the constraints x; + x, <4, —x; + %, < 1,
% + 3% =6, x, >0, and x, > 0.

(a) Begin by rewriting the inequality con-
straints as equations. Because both of
them are “less-than” inequalities, both
will introduce slack variables.

®

-~

Put the problem into a simplex tableau.
As always this requires pulling the objec-
tive function variables to the left side (with
the f), thus changing all the signs.

(¢) How can you tell that your tableau is

not in restricted normal form?

It

=

It is therefore time for the first phase.
Your tableau represents three constraints
so add three new variables: z, to the

first constraint, z, to the second and z
to the third. (Visually that adds three
columns to the tableau, each with one

1 and two 0s.) You will also temporarily
abandon your original objective function
and set out to maximize a new function,
Jo = =2 — 2z — 2. (Visually this replaces
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the first row with a different one that rep-
resents fo + z; + 2 + 2z = 0.) Write the

simplex tableau for starting the first phase.

(e

~

Make the z variables basic by subtract-
ing every constraint—the second, third,
and fourth rows—from the first row.

(f) Use the simplex method to opti-

mize your f, function.

Starting from the final tableau of the
first phase, toss out the z columns

and put back in the original objec-

tive function: that is, replace this top
row with the original top row.

~

(g

(h) The variables that were basic at the end
of the first phase may not be basic any
more, because they appear in the top
row. Make these variables truly basic

by using the constraint rows to elimi-

nate them from the objective row.

~

(i) Use the simplex algorithm in the

usual way to finish this problem. (This

is the “second phase.”)
[This problem depends on Problem 7.122.] Sketch
the feasible region defined by the constraints
in Problem 7.122. Add contours of f to your
plot, and use those contours to explain
how you could know which vertex the max-
imum of f is on. Verify that your answer
matches your answer to Problem 7.122.

7.131
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Maximize f = x; + 2x, subject to the
constraints 2x; + 3x, < 28, 2x; + xy > 8,

2 <x £8, x, > —2. (Note that—unlike in
the problems above—we cannot assume here
that x, is a non-negative number.)

10:11 A.M.

For Problems 7.124-7.130 use the two-phase simplex
method to find the maximum value of the function f
subject to the given constraints. Assume in each case
that all of the independent variables are constrained
to be non-negative. You may find it helpful to first
work through Problem 7.122 as a model. For the
problems with two variables you can check your
answers by drawing the feasible region and using
contours of f to find the optimal vertex.

7.124
7.125

7.126
7.127
7.128
7.129

7.130

S =3x — X0, X + 2% > 1, 3% +2x, <5

J=—x +2x, 2x; + 3%, <8,

X =X <1, —=x; + 4% =3

S =3% — X, X — X9 22, 0 +2x, <5

S =2x + X, X + X >2,3x +2x <7,x <1
S =2x =X+ x5, L S x4+ 009 +2x5 <2

S =2x — X0 +4xg, X — X + 2x5 > 2,
X+ 3% <4, x5 <1

J =% = 2% + Xy, X + X + 2005 + 30, > 1,
x4+ x, <10, x4+ 2% — x5 —x, =6

7.132

7.133

7.134

7.135

7.136

The Transportation Problem Your ware-
house in Atlanta has 300,000 nails, the one
in New York has 200,000 and the one in
Boston has 500,000. The stores in Chicago,
St. Louis, and Louisville need 400,000,
300,000, and 300,000 nails respectively.
Write, but do not solve, a simplex tableau to
answer the question: how many nails should
each warehouse send to each store? Assume
the transportation cost is proportional to
the distance, which is given below.

Atlanta New York Boston
Chicago 700 800 1000
St. Louis 500 1000 1200
Louisville 400 800 1000

]

== [This problem depends on Problem 7.132.]
How many nails should each warehouse
send to each store?

The Assignment Problem’ Suppose you have
three workers that each need to be assigned
to a job. The workers have different levels
of skill and experience; the cost of employ-
ing each one to do each job is given below.
Define a set of variables x;;, equal to one

if worker i has job j, and zero otherwise.
Write, but do not solve, a simplex tableau to
minimize the total cost subject to the con-
straints that each worker has exactly one job
and each job has exactly one worker.

Jobl Job2 Job3
Worker 1 1 3 2
Worker 2 2 3 5
Worker 3 2 2 4

||
== [This problem depends on Problem 7.134.]
Which worker should have each job?

|

== Exploration: Moving Sand In 1781 Gas-
pard Monge published his work on the “soil
transport” problem: how to most efficiently

9The simplex method is not the most efficient way to solve the assignment problem for large numbers of variables.
See, e.g., HW. Kuhn, The Hungarian Method for the Assignment Problem, Naval Research Logistics Quarterly 2

(1955) 83-97.

&
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move a pile of dirt from a given starting shape

to a given final shape. This problem has appli-

cations in many areas, including calculating
distance between states of a quantum mechan-
ical system.!” As an example, suppose you
have a square sandbox that goes from the ori-
gin to the point (5, 5). Initially the height of
the sand is given by §, = " You want to

move it to a different corner: S, = A e

The cost of moving a unit volume of sand is

equal to the distance you move it. In this form

the problem involves integrals over the ini-
tial and final distributions, but you can turn it
into a linear programming problem by break-
ing the grid into discrete boxes. If each box

is 1 x 1 then you’ll have a total of 25 boxes

Bl-j, where ¢ and j each go from 0 to 4.

(a) Make tables of the average values of S,
and §; in each of the 25 boxes. Hint:
once you calculate this for §, you can
get it for §; from symmetry.

(b) Your independent variables are x;;,, rep-
resenting the amount of sand moved
from Bj; to By,. Define an objective func-
tion representing the total cost of move-
ment as a function of these variables.

(c)

(d)

(e)

®

(g

Recall that cost is equal to distance times
amount of sand. Naively you have 5
independent variables, but you can sig-
nificantly reduce that number by tossing
out any term that involves moving sand
from a location where S, > S, or moving
sand to a location where §, > §,.

Define a set of constraints that reflects
the fact that the amount of sand

taken from each box equals §, — S,
(provided this is positive).

Define a set of constraints that reflects
the fact that the amount of sand

moved to each box equals S, — S,
(provided this is positive).

Either write a simplex program or

use an existing one to find the mini-
mum cost to move the sand.

Look at the values of the x;, in your
final solution and describe in words how
the sand was moved. You should find

that the answer was predictable.
Find the minimal sand-moving cost

for the same initial sand(distribution,
but with §; = (1/2)e"*+/4,

10:11 A.M. Page 25

10Karol Zyczkowskiyx and Wojeciech Slomczynskiz, “The Monge Distance Between Quantal States,”
J. Phys. A: Math. Gen. 31 (1998) 9095-9104.

&



