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7.6 Additional Problems
7.137 The picture below shows a rubber sheet with

three small stones on it. Their initial posi-
tion vectors are î, î + ĵ, and −î + ĵ, measured
from the origin that’s marked “O.” The rub-
ber sheet is compressed vertically until it is
only half as tall as before, as shown below.

O

O

(a) What happens to the x-component
of each vector? What happens to the
y-component? First answer in words,
then write equations that give the
new x1 and y1 in terms of the old x0
and y0 for an arbitrary vector under-
going this transformation.

(b) What are the position vectors for the three
stones after the transformation?

(c) Write a matrix that performs the trans-
formation you described in Part (a). In
other words, write a matrix that you can

multiply by
(
x0
y0

)
to get

(
x1
y1

)
. Check

your matrix by multiplying it by each of
the initial rock positions to make sure it
gives the final positions you predicted.

Next you look at a reflection of the rub-
ber sheet in a mirror, so you see all the
stones reversed left-to-right.

O

O

(d) What happens to the x-component
of each vector? What happens to the
y-component? First answer in words,
then write equations that give the
new x2 and y2 in terms of the old x1
and y1 for an arbitrary vector under-
going this transformation.

(e) What are the position vectors for the
three stones after both transforma-
tions have been applied?

(f) Write a matrix that performs the trans-
formation you described in Part (d).
Check your matrix by multiplying it by
each of the pre-reflection rock posi-
tions to make sure it gives the final
positions you predicted.

Finally, consider the following trans-
formation matrix.

𝐌 =
(

0 −1
1 0

)

(g) Draw each of the following vectors, and
then draw the vector you get after you
multiply 𝐌 by the given vector.
i. î
ii. ĵ
iii. −î
iv. 2î + 2ĵ

(h) Looking at your drawings, what trans-
formation does this matrix perform on
vectors? You can’t answer that it did such-
and-such to this vector and so-and-so to
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that vector: you need one succinct state-
ment of what effect it has on all vectors.
(Equivalently you could say what hap-
pened to the rubber sheet, analogously
to how we described the transformations
above.) To test your answer, predict on
visual terms where the vector −ĵ will end
up after this transformation and then
multiply 𝐌 by −ĵ to check if you got
it right.

(i) Multiply 𝐌 by the previous posi-
tions of the three stones to find their
final positions. Make sure they match
what you would expect from your
description of this matrix.

(j) Write a single matrix that takes the posi-
tion vector of a stone, compresses it
vertically by a factor of 2, reflects it hor-
izontally, and then does whatever trans-
formation 𝐌 does. Check your matrix
by multiplying it by each of the origi-
nal rock positions to make sure it gives
the final positions you calculated in
Part (i).

(k) Write a matrix to return the stones
from their final positions (after all
three transformations) to their initial
positions î, î + ĵ, and −î + ĵ.

7.138 Matrix 𝐀 rotates any point matrix 20◦

clockwise. Matrix 𝐁 stretches any point
matrix by a factor of 3 in the x-direction.
Nothing in this problem should require you
to write or multiply any matrices.
(a) What does matrix 𝐀−1 do to a matrix?
(b) What does matrix 𝐁−1 do to a matrix?
(c) What is the determinant |𝐀|?
(d) What is the determinant |𝐁|?
(e) What is the determinant |𝐁−1|?
(f) What is the determinant |𝐀𝐁|?
(g) Matrix 𝐏 draws the rectangle shown below.

Draw the shapes represented by point
matrices 𝐀𝐏, 𝐀−1𝐏, 𝐀𝐁𝐏 and 𝐁𝐀𝐏.

P

7.139 In the figure below, matrix 𝐀 transforms
the solid square into the dashed dia-
mond, and matrix 𝐁 transforms the solid
square into the dotted diamond.

A

C

B

(–2,1)

(–3,–1)

(–1,–3)

(–1,2)

(0,1)

(1,0)

(a) Matrix 𝐀 turns the point (0, 0) into (0, 0)
but that’s no surprise—any matrix does
that. 𝐀 also turns the point (1, 0) into
(−1, 2), and turns the point (0, 1) into
(−2, 1). Finally it turns the point (1, 1)
into some point in the second quad-
rant. You can’t quite see what that last
point is—and that’s OK. Using the points
that you do know, find matrix 𝐀.

(b) Matrix 𝐁 turns (1, 0) into (−3,−1), while
(0, 1) becomes (−1,−3). Find matrix 𝐁.

(c) Matrix 𝐂 transforms the dashed diamond
into the dotted diamond. Write a symbolic
matrix equation, using only the letters 𝐀,
𝐁, and 𝐂 (no numbers!) that expresses
the relationship between 𝐂, 𝐁, and 𝐀.

(d) Solve the equation symbolically
to find matrix 𝐂.

(e) Calculate matrix 𝐂.
(f) The drawing shows two points for which

we can clearly see what matrix 𝐂 should
do. Test your answer on those two points.

7.140 Write the matrices for rotating 2D shapes by
an angle 𝛼 and rotating them by an angle
𝛽. Multiply the two matrices and prove
using trig identities that the resulting matrix
rotates shapes by the angle 𝛼 + 𝛽.

7.141 Consider a computer animation package
in which every object is represented by
a 3 × n point matrix: n points, each with
x-, y-, and z-coordinates, that the com-
puter will draw in order and connect with
line segments. Stretches, reflections, and
rotations, as well as composites of these
operations, can be represented by matrix
multiplications. But one of the simplest oper-
ations, a “translation”—retaining the shape
and orientation of an object but chang-
ing its position in space—is harder in this
representation.
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(a) Object 𝐀 comprises three points. (You
can call the first point (x1, y1, z1) and so
on for the others.) Write a matrix oper-
ation that will add a constant X to its
x-coordinates, Y to its y-coordinates, and
Z to its z-coordinates. Hint: This operation
will not be a matrix multiplication.

(b) Object 𝐁 comprises four points. Write a
matrix operation that will perform the
same translation to this object.

You should have discovered that you
needed a different matrix to perform this
same operation on the two objects. This
situation is not ideal for programming.
Also, the fact that translation is not done
by matrix multiplication makes it harder
to form compound transformations made
of translations and rotations. The solution
is to represent every three-dimensional
point with a four-dimensional vector, where
the fourth coordinate is always a 1.
(c) Write the matrix that represents object 𝐀

in this way. (It won’t be 3 × n anymore.)

(d) Multiply the matrix 𝐓 =
⎛⎜⎜⎜⎝
1 0 0 X
0 1 0 Y
0 0 1 Z
0 0 0 1

⎞⎟⎟⎟⎠
by object 𝐀. What transforma-
tion does it perform?

(e) Does matrix 𝐓 have the same effect on
object 𝐁? How do you know?

7.142 If L is a line 70◦ counterclockwise from
the x-axis then a reflection about L is
accomplished by this matrix.

𝐌 =
(
cos2 70◦ − sin2 70◦ 2 sin(70◦) cos(70◦)
2 sin(70◦) cos(70◦) sin2 70◦ − cos2 70◦

)

(a) Let V⃗ = î. Calculate 𝐌V⃗ . (Use deci-
mals instead of carrying around all the
sines and cosines.) Plot V⃗ and 𝐌V⃗ . If
they don’t appear reflected about L
figure out what you did wrong.

(b) For a more rigorous check, you can ver-
ify that 𝐌 has the right eigenvectors
and eigenvalues. Without doing any
calculations, in what directions should
the eigenvectors of 𝐌 point and what
should their eigenvalues be?

(c) Find the eigenvectors in component form.
This part has nothing to do with𝐌. Just
look at the line L and do the trig to find
the vectors that point in the directions you
identified. This time leave your answers in
terms of trig functions, not as decimals.

(d) Verify that those vectors are eigenvectors
of𝐌 with the eigenvalues you predicted.

7.143 Consider the set of matrices that stretch vec-
tors by a factor 𝜆1 along the axis y = x and by
𝜆2 along y = −x, for all real values of 𝜆1 and 𝜆2.
(a) Write such a matrix in terms of 𝜆1 and 𝜆2.
(b) Assuming addition and multiplica-

tion by a scalar are defined in the
usual way for matrices, is this set of
matrices a vector space?

(c) If you found that it is a vector space,
what are its dimensions?

7.144 [This problem depends on Problem 7.143.] Assum-
ing “addition” is defined by the usual rule
of matrix multiplication and multiplica-
tion by a scalar is defined in the usual way
for matrices, show that the set of matrices
described in Problem 7.143 does not define
a vector space. Given this addition rule,
how would you define multiplication by a
scalar so that this is a vector space? Hint:
Look at what distributivity of scalar mul-
tiplication with respect to vector addition
implies for the eigenvalues of 2𝐚 with this
new rule.

7.145 The space of all 2D rotation matrices 
is a vector space, but not if you define
matrix addition and multiplication by
a scalar in the usual ways.
(a) Show that if you define addition and mul-

tiplication by a scalar in the way we usually
do for matrices,  is not a vector space.

(b) Instead, you can define the sum of two
rotation matrices as the rotation matrix
for the sum of their two angles. (This
is equivalent to multiplying the two
matrices in the usual way.) You can sim-
ilarly define multiplication by a scalar as
multiplying the rotation angle by that
scalar. With these definitions  is a vec-
tor space. What is its dimension?

7.146 The set of all rank 3 tensors is a vector space
if addition and multiplication by a scalar
are defined componentwise, as they are
for matrices. Show that this vector space
obeys distributivity of scalar multiplication
with respect to vector addition.

7.147 Inertia Tensor In introductory physics you
probably learned that a body has a “moment
of inertia” I about any possible axis, which
plays a role analogous to mass for linear
motion. You may not have been taught that
𝐈 is a tensor with nine components. (In
this problem and the next we will use the
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For Problem 7.149

Cost per serving ($) Calories Sodium (mg) Sugar (g)

Peanut butter 0.50 94 73 1.5
Salted Lentils 1 230 240 2
Spam 0.20 174 770 0
Soylent green 0.75 400 100 1

symbol 𝐈 for the inertia tensor—no relation to
the identity matrix.) For a continuous object
of density 𝜌, Iij = ∫V 𝜌

[
𝛿ij

(∑
k x

2
k

)
− xixj

]
dV ,

where ∫V dV means a triple integral over
the volume, and x1, x2, and x3 are the
three Cartesian coordinates x, y, and z. The
“Kronecker delta” 𝛿ij equals 1 if i = j and 0
otherwise, so the sum over k only appears
in the diagonal elements of 𝐈.
(a) Calculate the inertia tensor of a uni-

form cube of mass M with corners at
the origin and the point (L,L,L).

(b) Angular momentum is given by the
equation L⃗ = 𝐈𝜔⃗. If the cube in Part (a)
moves with angular velocity 𝜔 = aî + bĵ
where a and b are constants, calcu-
late its angular momentum.

7.148 [This problem depends on Problem 7.147.]
(a) The angular equivalent of Newton’s sec-

ond law is 𝜏 = 𝐈𝛼. Rewrite this equation to
give 𝛼 as a function of 𝜏 and then answer
the equation: if a torque 𝜏 = 𝜏0k̂ is applied
to the cube in Problem 7.147, find the
angular acceleration 𝛼 of the cube.

(b) Find the inertia tensor of the same cube
about a set of axes where the z -axis
is unchanged and the x -axis goes diag-
onally through the bottom face of the
cube. Hint: this can be done more
easily with a rotation matrix than by
integrating all over again.

(c) The “principal axes” of a body are
the ones for which the inertia ten-
sor is diagonal. Find the principal
axes of this cube. (The origin remains
unchanged at the corner of the cube.
If the origin were in the center the
principal axes could be guessed from
symmetry.)

(d) If you apply a torque about the first of
the principal axes you found, in what
direction will the cube rotate?

7.149 The Diet Problem The company Sumptu-
ous Land Of Plenty has just been awarded
a contract to make stew for school lunches.
Each serving must have between 600 and
700 calories, no more than 710 mg of sodium,
and no more than 10 g of sugar.11 The com-
pany has hired you to create the recipe that
meets these requirements for the least possible
cost, using the ingredients in the table above.
Write, but do not solve, a simplex tableau to
answer the question: how many servings of
each ingredient should go in the recipe?

7.150 [This problem depends on Problem 7.149.]
How many servings of each ingredi-
ent should go in the recipe?

7.151 Exploration: The Schwarz Inequality. The
Schwarz inequality says that for any two vec-
tors 𝐚 and 𝐛 in an inner product space:

|(𝐚,𝐛)| ≤ ||𝐚|| ||𝐛|| (7.6.1)

You’ll prove this important inequal-

ity in this problem.
(a) First, let 𝐚 and 𝐛 be spatial vectors. Explain

why the Schwarz inequality must hold
in this case. What must be true of the
two spatial vectors in order for the two
sides of Equation 7.6.1 to be equal?

Now let 𝐚 and 𝐛 be generalized vectors.
Define a new vector

𝐜 = 𝐚 − (𝐚,𝐛)||𝐛||2 𝐛
(b) Show that 𝐜 and 𝐛 are orthogonal.

11The calorie and sodium requirements are from the “National School Lunch Program” guidelines for 6th–8th grade, and
the nutrition information for peanut butter and spam comes from nutrition Web sites. Everything else in the problem we
just made up.
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(c) You can rewrite the definition of 𝐜
as 𝐚 = 𝐜 +

[
(𝐚,𝐛)∕||𝐛||2] 𝐛. Use that

equation for 𝐚 to calculate ||𝐚||2. Use
your result from Part (b) to simplify
your answer as much as possible. Hint:
Remember that (𝐚, k𝐛) = k∗(𝐚,𝐛).

(d) Rearrange your result to Part (c) to
prove Schwarz’s inequality.

(e) What must be true of 𝐜 in order for
Schwarz’s inequality to be an equal-
ity? (Assume that 𝐚 and 𝐛 are both
non-zero.)

(f) Show that Equation 7.6.1 is an equality
only if 𝐚 and 𝐛 are linearly dependent.


