
Chapter: Taylor Series and Series Convergence

Computer Problems for Taylor Series and Series Convergence

The two problems below are a set; the first should be done without a computer and the second is a computer-based
follow up.

1. The drawing below depicts a familiar situation: a mass m swings at the end of a massless rope of length L,
subject to the forces of gravity and the tension of the string. It can be shown that this pendulum will obey the

Figure 1: Simple pendulum

differential equation d2θ/dt2 + (g/L) sin θ = 0. (You can work that out yourself if you’ve taken an introductory
mechanics class.) Unfortunately, this equation is not easy to solve!

(a) Find the function that serves as a linear approximation to sin(θ) around θ = 0.

(b) Replace the function sin θ with its linear approximation.

(c) Solve the resulting differential equation.

(d) Describe in words the motion resulting from your solution.

(e) For what kinds of θ-values is your solution valid?

2. [This problem depends on Problem 1.] A grandfather clock uses a pendulum similar to the one described
in the previous problem to keep time. The pendulum swings in a narrow box so that it always has a small
angle θ. The box is designed this way so that the linear approximation will be accurate. In this problem you
will estimate how small those oscillations need to be. The parameter g is 9.8 m/s2 and you can take L = 1m.

(a) Using your solution from the previous problem, find the period of the pendulum for small oscillations.
You should find that your answer is independent of the amplitude, as long as it is small enough that your
linear approximation can be considered valid.

(b) Use a computer to solve the original (not approximate) equation d2θ/dt2 + (g/L) sin θ = 0 with initial
conditions dθ/dt = 0, θ = 5◦ and plot the result. (Caution: Many computer programs expect angles to be
in radians, so you may have to convert before entering θ.) Use trial and error to find a final time that
allows you to see at least two full oscillations.

(c) Have the computer find the period of the solution you found in Part (b). You should be able to do this
by asking it to find two successive roots of the solution and subtracting them.

(d) Repeat Parts (b) and (c) for initial angles between 10◦ and 45◦ in steps of 5◦. Make a plot of oscillation
period vs. amplitude in the range 5◦ ≤ A ≤ 45◦. Be sure to choose a scale for the vertical axis that lets
you see how the period changes with amplitude.

(e) Describe in words what happens to the period as the amplitude decreases. Does it keep increasing, keep
decreasing, level off at some value, or do something else entirely?

(f) Using your results from Parts (a) and (d) estimate the maximum amplitude that a grandfather clock
could swing at if you wanted its period of oscillation to be within 1% of the one given by the linear
approximation.
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3. Consider the equation dy/dt = (1 + sin y)
−2

.

(a) Replace the right hand side with its linear approximation around y = 0 and have a computer solve the
resulting differential equation analytically with initial condition y(0) = 0.

(b) Numerically solve the original equation with the same initial condition and plot this together with your
approximate solution out to time t = 5. You should find that the two solutions do not match well at late
times.

(c) Explain why the linear approximation that you used was not a good approximation for this problem.
(Hint: Look at how y behaves at late times.) Don’t just say that the two solutions in Part (b) looked
different; explain why the linear approximation, which works so well for many problems, was not very
accurate for this one.

4. Consider the equation dy/dt = 2− ey.

(a) Replace the right hand side with its linear approximation around y = 0 and have a computer solve the
resulting differential equation analytically with initial condition y(0) = 0.

(b) Numerically solve the original equation with the same initial condition and plot this together with your
approximate solution out to time t = 5. You should find that the two solutions do not match well at late
times.

The asymptotic value of y at late times (also known as the “steady state” value) is the value of y such that
dy/dt = 0.

(c) Find the steady state value of y.

(d) Find a linear approximation to the right hand side of the differential equation about the steady-state
y-value.

(e) Now have the computer analytically solve the differential equation using this new linear approximation
(still with initial condition y(0) = 0).

(f) Plot the three solutions together: the numerical solution to the original equation and the analytical
solutions using the two different linear approximations.

(g) In which region of the plot does the linear approximation from Part (a) approximate the full solution
better? In which region of the plot does the linear approximation from Part (d) do better? Why? Under
what circumstances would each of these be a more useful approximation to use for a physical problem?

5. Consider the differential equation d2f/dt2 = 2
(
e−3f − 1

)
.

(a) Replace the right hand side with its linear approximation around f = 0 and solve the resulting differential
equation. (You can do this by hand or with a computer.) Solve for the arbitrary constants with initial
conditions f(0) = 0, f ′(0) = 0.2.

(b) Numerically solve the original differential equation (without the approximation) using those same initial
conditions. Plot the approximate and exact (numerical) solutions on the same plot, clearly marking which
is which. Use trial and error to find a final time that allows you to see at least two full oscillations.

(c) Repeat Parts (a) and (b) for initial conditions f(0) = 0, f ′(0) = 2.

(d) Describe in words the differences between your plots in Parts (b) and (c). In which case was the linear
approximation more accurate? Why?
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In Problems 6–8 make a plot showing the given function and the first three partial sums of its Maclaurin series in the
range −5 ≤ x ≤ 5. In calculating the partial sums you should skip terms that equal zero, so for example the second
partial sum of 1− x2/2 + x4/24 would be 1− x2/2. Make sure it’s clear which curve is the function and which ones
are the partial sums. Estimate visually the value of x where each partial sum stops being a good approximation.
(There is no precise correct answer for this question; just make a reasonable estimate based on looking at your plot.)

6. f(x) = cosx

7. f(x) = 1/(2 + cosx)

8. f(x) = sin
(
e−x

2
)

9. In this problem you’ll use the function f(x) = 0.5 sin(x2) + 1.5 sin(x) + 0.2 to visually demonstrate the
convergence of a Maclaurin series to the function it is approximating.

(a) Plot f(x) in the range −5 ≤ x ≤ 5. Describe its shape in 20 words or less.

(b) Display on one plot f(x) and every tenth partial sum up through the hundredth. In other words, display
the zeroth order sum, the tenth order, the twentieth, and so on up through the hundredth—eleven partial
sums in all. Plot f(x) as a thick, black curve and the partial sums as thin lines, each of a different color.
The horizontal axes should run from −5 to 5 and the vertical axes from −3 to 3.

(c) Describe how the plot changes as you go from one partial sum to the next.

(d) Visually estimate the values of x (one low and one high) where the 100th order partial sum stops being a
good approximation to f(x). How many local maxima and minima does this partial sum trace out nearly
identically with f(x)?

10. Calculating π. If you want to know the value of π to several decimal places you can of course just plug it into
your calculator. But how were those decimals found, and how do computers nowadays calculate π to billions
of decimal places? Many of the methods used involve Taylor series.

(a) Find the Maclaurin series for tan−1 x out to seventh order. (You can get the derivatives you need from a
computer program, a table of derivatives, or just by searching the Web.) From there you should be able
to spot the pattern and be able to write it down to any order you want. Use this to write an equation of

the form tan−1 x =

∞∑
n=0

<something>.

(b) Plug x = 1 into the equation you just wrote. This should give you an expression involving π on the left
and a series involving simple fractions on the right. You can thus use this series to calculate π to any
desired accuracy. Use the seventh order approximation to find an estimate of π.

(c) Now have a computer calculate and store the partial sums of this series from n = 1 to n = 1000.
Generate a plot of the partial sum vs. n. The plot should converge towards the value of π.

(In practice this series is not a great way to calculate digits of π since it converges so slowly, as you saw in your
plot. There are other, more complicated series that converge more quickly.)

11. (a) Find the Taylor series for sinx around x = π. Express your answer in summation notation.

(b) Use the first three non-zero terms of your series to estimate sin(3).

(c) Calculate the percent error in your estimate from Part (b).

(d) Draw graphs of sinx, and of the first three partial sums of your series, for π/2 ≤ x ≤ 5π/2. Does
each partial sum approximate the original function better than the previous?
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12. (a) Find the Taylor series for cosx around x = π/3. (Hint: cos (π/3) = 1/2 and sin (π/3) =
√

3/2.)

(b) Use the first three non-zero terms of your series to estimate cos(1).

(c) Calculate the percent error in your estimate from Part (b).

(d) Draw graphs of cosx, and of the first three partial sums of your series, for −π/2 ≤ x ≤ π. Does each
partial sum approximate the original function better than the previous?

13. Chaos Theory

Biologists model constrained population growth by the recursive sequence pn+1 = kpn (1− pn), where pn is
the population after n generations and k is a positive constant called the “growth rate.” pn is always between
0 (no population) and 1 (full capacity): p = 1/2 does not mean the population is half an animal, but that the
population is at half its capacity.

(a) Letting k = 1.2 and p1 = 0.1, use a computer program to rapidly generate at least thirty generations.
You will see the population approaching an equilibrium point. What is it?

(b) With k still set to 1.2, experiment with different values of p1 ranging from 0.1 to 0.9. Note that the
resulting numbers differ each time but they approach the same limiting value.

(c) Repeat the experiment with k set to 1.5, 2.0, 2.3, and 2.7. Record in a table the k-values and the resulting
equilibrium points. For each value of k be sure to try at least two values of p1.

(d) Repeat the experiment with k = 3.1. What happened?

(e) Repeat the experiment with k = 3.2. The results are similar, but not identical, to the results in Part (d).
Describe them.

(f) Repeat the experiment with k = 3.5. What happened now?

(g) Finally, repeat the experiment with k = 3.7.

With k = 3.7 the sequence represents what mathematicians call “chaos.” There is no discernable pattern to
the numbers. If you repeat the experiment with the exact same starting value, of course you will get the same
results. However, if you change the starting value, even by a very small amount, the resulting numbers will be
completely different. (This property goes by the imposing name “sensitive dependence on initial conditions.”)

(h) Chaotic behavior—including sensitive dependence on initial conditions—has been shown to apply to real-
world systems including the weather and the stock market. What implications does this have for scientists
attempting to predict the behavior of such systems?

14. The equation below gives the asymptotic series expansion for erfc x.

erfc x ∼ e−x
2

√
πx

∞∑
n=0

(−1)n
(2n)!

n!(2x)2n

Suppose you wish to use this series to approximate erfc 3.

(a) Evaluate terms of this series expansion at x = 3. You should see that the terms decrease in magnitude
for a while and then increase. What term has the smallest magnitude?

(b) In Part (a) you found the n-value that minimizes the magnitude of the terms in this series. Make a graph
of the partial sums of this series as n goes from 0 up to twice that value. Include on your graph a label
showing the correct value of erfc 3. Describe the behavior you see.

(c) How many terms of this series do you need to obtain an approximation accurate to within 0.1%?

(d) Repeat Parts (a)–(c) for erfc 5. How is the behavior the same, and how is it different?
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15. The “exponential integral” is defined as Ei x = −
∫∞
−x(e−t/t)dt. The following series converges to Ei x for

all x 6= 0: Ei x = γ + ln |x| +
∑∞

n=1 x
n/(nn!). Here γ is the “Euler-Mascheroni constant,” roughly equal to

0.5772. You can also represent Ei x with the following asymptotic expansion, valid in the limit x→ −∞.

Ei x ∼ ex

x

∞∑
n=0

n!

xn

You’ll use both of these series to approximate Ei(−10).

(a) Prove that this asymptotic series diverges for any value of x

(b) Calculate the value of Ei(−10) to at least 5 decimal places.

(c) Calculate the 40th partial sum of both series. Is either one a good approximation?

(d) Calculate the 30th partial sum of both series. Is either one a good approximation?

(e) Calculate the 3rd partial sum of both series. Is either one a good approximation?

(f) Plot the partial sums of both series up to N = 50 as a function of N (the maximum value of n used in
the partial sum). Show on your plots the correct value of Ei(−10). Describe how each series behaves.

(g) Why is it useful to have a divergent, asymptotic expansion even though there is a convergent series that
works for this function?

16. The “error function” is defined by the following integral.

erf x =
2√
π

∫ x

0

e−t
2

dt

Its asymptotic expansion is

erf x ∼ 1− e−x
2

√
πx

∞∑
n=0

(−1)n
(2n)!

n!(2x)2n

(a) Write the Maclaurin series for et. (You can derive it or look it up.) From there you should be able to

easily generate the Maclaurin series for e−t
2

and from there the error function. You should not need a
computer for this part, although you can use one to check your answer when you’re done.

You now have two different series that can be used to estimate erf x. In the remainder of this problem you will
compare these two series using a computer.

(b) Use the n = 3 partial sum of each series to estimate erf 1/2. Which estimate is more accurate?

(c) Use the n = 3 partial sum of each series to estimate erf 30. Which estimate is more accurate?

(d) On one plot, show erf x and the n = 3 partial sum of both series for 0 ≤ x ≤ 30. Choose a vertical range
that allows you to see when each series is and isn’t a good approximation to the function, and estimate
the ranges in which each one gives a good estimate.

(e) One one plot, show the partial sums of both series with x = 5 as a function of N , the highest n value of
the partial sums. Estimate the range of partial sums for which each series gives a good approximation to
erf 5.
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Figure 2: Partial sums of the asymptotic series for erfc x, evaluated at x = 4

The two problems below are a set; the first should be done without a computer and the second is a computer-based
follow up.

17. The equation below gives the first term in the series expansion of erfc x.

erfc x =
e−x

2

√
π x
− 1√

π

∫ ∞
x

1

t2
e−t

2

dt

(a) Use integration by parts on that series to find the next term. Your final answer will be in the form erfc

x=<two terms plus an integral>. Hint: You cannot integrate e−t
2

but you can integrate te−t
2

.

(b) After n integrations the series looks like
∑∞

n=0 an(x) + Rn. Assume the remainder term is given by the
following integral with some coefficient cn.

Rn = cn

∫ ∞
x

1

t2n
e−t

2

dt

Perform the next integration by parts to find the term an+1 and the remainder Rn+1. You should verify
that the pattern continues because Rn+1 looks like Rn with n replaced by n+ 1 and a different coefficient.

(c) Do one more integration by parts to find an+2. (Don’t worry about the remainder integral this time.)
Simplify the ratio |an+2/an+1|.

(d) Given a fixed value of x, for which values of n will an+2/an+1 be greater than 1, and for which will it be
less than 1?

(e) Using your answer to Part (d), explain why Figure 2 looks like it does. In particular, explain how you
can use that answer to predict the value on the horizontal axis at which the terms switch from converging
towards a finite value to diverging away from it.

Your results in this problem demonstrate that for any fixed x the asymptotic series for erfc x should converge
towards a finite value for a while, and then start diverging above a certain value of n. Problem 18 will continue
this argument by arguing that the finite value the series converges to is in fact erfc x.

18. The Remainder of the Asymptotic Expansion for erfc [This problem depends on Problem 17.]

At any particular value of n, the asymptotic series for erfc x looks like
∑∞

n=0 an(x)+Rn, where Rn is the exact
difference between the series expansion and the correct value of erfc x. In this problem you’re going to show
that as n increases this remainder term decreases for a while, indicating that the series is getting closer to erfc
x, but that it starts to increase past a certain value of n. In fact you’ll show that this is approximately the
same value of n at which the terms an go from decreasing to increasing.

In Problem 17 you showed that if Rn = cn
∫∞
x
t−2ne−t

2

dt then Rn+1 = −cn[(2n + 1)/2]
∫∞
x
t−(2n+2)e−t

2

dt.
The coefficient in front of the Rn+1 integral is bigger than the one in front of the Rn integral by a factor of
(2n+ 1)/2. At the same time, however, the integrand decreased by a factor of t2, and it’s harder to say what
effect that has on the entire integral. The key to figuring that out is to notice that the decaying exponential
causes the integral to be dominated by values of t very close to x.
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(a) Numerically calculate
∫∞
x
t−2e−t

2

dt and
∫∞
x+.1

t−2e−t
2

dt for values of x ranging from 2 to 20. Show that
for sufficiently large x over 90% of the entire integral comes from x < t < x + .1. Estimate the lowest
value of x for which is true.

(b) Numerically calculate the ratio of
∫∞
x
t−2e−t

2

dt to
∫∞
x
t−4e−t

2

dt for values of x ranging from 2 to 20. On
the same plot, plot x2.

(c) What does dividing the integrand by t2 do to the value of the integral? Explain how your answer follows
from the plots you made.

(d) Putting together your answers so far, write a simple approximation for Rn+1/Rn, valid for large x.

(e) Using your answer to Part (d), estimate the value of n at which the remainder term switches from
decreasing to increasing as you increase n. Check your answer by verifying that it correctly predicts the
appearance of Figure 2.

(f) Explain how the results you’ve derived in this problem lead to the two properties that we said define
an asymptotic series. Hint: Remember that this integral represents the difference between the original
function and the nth term of the asymptotic series!

For Problems 19–22 use a computer to calculate partial sums of the Taylor series for the function about the midpoint
of the domain. On one plot, show the function in black and its partial sums in different colors. You should show
enough partial sums to clearly see how they are changing as you add more terms, and your final partial sum should
match the function well throughout the domain.

19. sinx, −5 ≤ x ≤ 5

20. e−x
2

, −2 ≤ x ≤ 2

21. e−x
2

, 0 ≤ x ≤ 2

22. sin3 x, −π/2 ≤ x ≤ π

23. Let f(x) = ex + ex
2

. Use a tenth order Maclaurin series to estimate f(.8). Use the Lagrange remainder to
place an upper bound on the error of this approximation, and verify that the upper bound is correct.

24. The differential equation dx/dt = x+ sinx+ cosx is nonlinear and has no simple solution.

(a) Use a Maclaurin series to approximate the right side of this equation with a linear function of x, valid
when x ≈ 0.

(b) Solve this approximate differential equation with the initial condition x(0) = 0.

(c) Do you expect your approximation to remain valid at late times? Explain, using the solution you found.

(d) Plot the approximate solution you found and the numerical solution to the original differential equation,
from t = 0 to t = 1. Does the behavior match your prediction? Explain.

25. Like π, e is an irrational number that has been calculated to large numbers of digits. (As of late 2010
the first trillion digits were known.) For this problem we’ll let you get away with doing the first 10000. Use
the Maclaurin series for ex with x = 1 to find successively better approximations of e. Keep adding terms up
to and including the first term that is smaller than 10−10000. Give as your final answer the 9997th through
10000th digits. (Count the initial 2 as the first digit.)
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